

Journal home page: <https://ssarpublishers.com/ssarjms>

Abbreviated Key Title: SSAR J Multidiscip. Stud

ISSN: 3049-2041 (Online)

Volume 3, Issue 1, (Jan-Feb) 2026, Page 83-101 (Total PP.19)

Frequency: Bimonthly

E-mail: ssarpublishers@gmail.com

OPEN ACCESS

ARTICLE HISTORY

Received: 16-01-2026 / Accepted: 07-02-2026 / Published: 09-02-2026

Multidimensional AI-Enabled Software Engineering Practices and Entrepreneurial Innovation Performance: A Conceptual Framework

By

Corresponding authors: Maryam Folakemi Adepoju¹, Abdullateef Ajibola Adepoju², Aliyu Mohammed³

¹11 Umaru Muhammadu Street, 65 NNDC Quarters, Hotoro GRA, Kano, Kano State, Nigeria.

²Randatech Systems Ltd, Gidan Nasir Ahmed, No. 3 Zaria Road, Opposite Ja'oji Quarters, Kano, Nigeria.

³Department of Management, School of Arts, Management and Social Sciences, Skyline University Nigeria, Kano.

ABSTRACT: The rapid adoption of artificial intelligence (AI) in software engineering has transformed the ways entrepreneurial ventures innovate, yet the multidimensional impact of AI-enabled practices on entrepreneurial innovation performance remains underexplored. This study aims to develop a conceptual framework linking AI-enabled software engineering practices including automation-driven development, intelligent testing, AI-based code generation, DevOps integration, and AI-driven security to entrepreneurial innovation performance, measured across product, process, and business model dimensions. The research uses the conceptual approach, in which the findings are based on the data available in the secondary sources, such as academic journals, books, conference papers, historical documents, and reliable online sources. The literature review points out that the use of AI practices promotes efficiency, minimizes errors, prototyping, constant process improvements, and organizational learning, which in turn drive the results of innovation in the context of entrepreneurship. Theory Theoretical evidence reveals that the influence of AI adoption is moderated by workforce preparedness, knowledge management, and organizational capacities, whereas the integration of security strategies can guarantee sustainable and reliable innovation. On the basis of these understandings, the research advises entrepreneurs and software companies to plan fully embrace and integrate AI-enabled practices, allocate resources to upskilling groups, and align technological usage with organizational capacity. The study concludes that AI-enabled software engineering practices are critical drivers of entrepreneurial innovation, although empirical validation and context-specific research are needed to confirm the framework's applicability across diverse markets.

KEYWORDS: Artificial Intelligence, Software Engineering, Automation, Entrepreneurial Innovation, DevOps, Code Generation, Innovation Performance.

INTRODUCTION

1.1 Background of the Study

The growing overlap between artificial intelligence (AI) and software engineering has fundamentally transformed the way entrepreneurial firms innovate, compete and scale in digitally intensive settings. Intelligent automation, machine learning-enhanced testing,

automated code generation, DevOps intelligence, and AI-enhanced security analytics are only some examples of AI-enabled software engineering practices that are redefining the classical development processes cycle into a data-driven, adaptive cycle. These activities enable innovation efforts to grow faster and better product creation,

improve software quality, and react to market change faster, which improves innovation outcomes in highly fluid ecosystems (Manoharan et al., 2025; Zhang, Chen, and Li, 2023). Entrepreneurial innovation performance indicates the ability of companies to produce and market new products, services, processes and business models. In technology-oriented projects, the performance in innovation is more and more dependent on the efficiency of digital infrastructures and smart development capacity. The use of AI-enabled software engineering is helpful in terms of experimentation, continuous learning, and real-time decision-making that are crucial to entrepreneurial agility and exploiting opportunities (Teece, 2018; Nambisan, Wright, and Feldman, 2019). This has led to the fact that software engineering is no longer a technical exercise, but a strategic asset that forms the basis of entrepreneurial innovation deliverables.

Recent literature points to the fact that the advantages of AI implementation are the greatest when AI technologies are implemented in an integrated fashion throughout organizational processes, as opposed to being implemented as a one-dimensional tool. Cyber-physical and smart digital spaces enable AI-based systems to improve adaptability, resiliency, and innovation provided that they are matched with the human-centered design, organizational learning, and security-aware practice (Mohammed, Sundararajan, and Kumar, 2024; Vial, 2019). These findings emphasize the importance of considering AI-obligatory software engineering as a multidimensional construct that all influence the performance of entrepreneurial innovation. Moreover, the prospering use of AI-based software solutions presents entrepreneurial companies with an increased risk concerning cybersecurity and system complexity as well as human-machine interface. Research on smart manufacturing and digital entrepreneurship demonstrates that the level of innovation performance is directly related to the effectiveness of the organization in combining AI potential with safe architectures, high-quality human resources, and proactive risk management policies (Goni et al., 2024; Mohammed, Kumar, Raj, and Sangeetha, 2024). Because of this, the conceptualization of the strategic position of AI-enabled software

engineering practices is essential to the continuation of entrepreneurial innovation in more and more complex digital landscapes.

1.2 Problem Statement

Although AI technologies have been actively disseminated in software development practices, there is a lack of conceptual agreement on the collective effects on entrepreneurial innovation performances of AI-enabled software engineering practices. Current studies are inclined to review the adoption of AI (or digital transformation or the results of the innovation) independently and end up with the fragmented theoretical account that does not consider the multidimensionality of AI-enabled software engineering. Such deficiency of integrative knowledge limits academic research as well as the managerial judgment in the field of entrepreneurship. Moreover, a significant number of entrepreneurial projects are unable to convert AI investments into innovation deliverables. The lack of workforce preparedness, a lack of smooth integration of DevOps, ethical and security issues, and organizational limitations are obstacles that tend to deter the successful implementation of AI-enabled software engineering practices (Mohammed et al., 2024a; Vial, 2019). Consequently, the adoption of AI does not necessarily result in high-performance innovation, which poses important concerns regarding the different software engineering practices that are of the highest importance and how they relate to each other to generate entrepreneurial innovation.

The second important issue is the lack of security-focused and human-oriented viewpoints in research that connects AI-autonomous development activities to the performance of innovations. It has been found out that the innovation gains may be compromised in cases where AI-driven software systems do not consider cybersecurity integration, trust, transparency, and human-machine collaboration (Mohammed, Sundararajan, and Kumar, 2024; Rai, Constantinides, and Sarker, 2019). Start-ups and small technology companies are also especially susceptible to these issues as lack of resources and accelerated development cycles make them especially prone to them. As a result, there is an evident conceptual gap in the comprehension of the joint and multidimensional impact of AI-enables software engineering practices including

automation, intelligent testing, code generation, DevOps integration, and AI-driven security on entrepreneurial levels of innovation performance. Although some previous research did focus on digital transformation technologies, entrepreneurial strategies, and innovation separately (Ashok Kumar et al., 2024; Kumar et al., 2024; Nambisan et al., 2019), few of them have presented these concepts into a single conceptual framework. To fill this gap is necessary to further the theory and to direct future empirical studies on AI-enabled entrepreneurship and innovation performance.

1.3 Significance of the Study

The work is an important contribution to the theoretical knowledge of the role of multidimensional AI-enabled manipulation of software engineering practices in entrepreneurial innovations performance. Although the previous studies recognize the revolutionary power of digital technologies, conceptual links are missing between AI-based software engineering and entrepreneurial performance (Manoharan et al., 2025; Vial, 2019). Gathering the knowledge of artificial intelligence, software engineering, and digital entrepreneurship, the proposed study offers a systematic framework that clarifies how automation, intelligent testing, code generation, DevOps integration, and AI-assisted security can all contribute to the organizational innovation capability. The research also has a theoretical contribution by conceptualizing the AI-enabled software engineering practices as organization-wide strategic capabilities, as opposed to individual tools. The existing literature on intelligent robotics and drones, as well as cyber-physical systems, emphasizes the fact that operational efficiency, decision-making, and competitive advantage are improved with the strategic implementation of AI technologies (Kumar et al., 2024; Mohammed, Sundararajan, and Kumar, 2024). This study builds on these findings by connecting multidimensional practices based on AI-enabled practices to the performance of entrepreneurial innovation to show that technical capabilities can be converted into strategic innovation performance.

The practical aspect of the study presents practical information to entrepreneurs, startup founders, and technology managers who seek to use AI-powered

software ecosystems to develop innovation. Studies on the Robot Operating System (ROS) and AI-enabled software environments indicate that these ecosystems have the potential to speed up product development, shorten the time-to-market, and allow scaling of entrepreneurial projects (Abdulrasheed, Auwal, and Mohammed, 2025; Nambisan, Wright, and Feldman, 2019). This study informs managerial actions related to strategic technology adoption and capabilities building by explaining which AI-facilitated practices are most effectively used in this context. Lastly, the research has strong policy and ecosystem implications especially in the emerging economies that in most cases are underdeveloped infrastructures that impair organizational performance and capacity to innovate (Abubakar, Bala, and Mohammed, 2025). The study makes a recommendation to policy-makers, technology hubs, and institutions of support in the field of innovation by emphasizing the possibilities of AI-enabled software engineering to reduce structural and operational constraints and enhance the strength of entrepreneurial ecosystems. Moreover, the incorporation of the knowledge on digital transformation literature highlights that the development of organizational learning, knowledge management, and human-machine collaboration is the key to the maintenance of innovation performance (Teece, 2018; Rai, Constantinides, and Sarker, 2019; Zhang, Chen, and Li, 2023).

1.4 Research Objectives

1. To examine the influence of AI-enabled software engineering practices on entrepreneurial innovation performance.
2. To analyse how automation, intelligent testing, code generation, DevOps integration, and AI-driven security collectively shape innovation outcomes.
3. To identify the strategic role of AI-enabled software engineering in enhancing entrepreneurial agility and competitive advantage.
4. To develop a conceptual framework linking multidimensional AI-enabled software engineering practices to entrepreneurial innovation performance.

1.5 Research Questions

1. How do AI-enabled software engineering practices influence entrepreneurial innovation performance?
2. What is the combined effect of automation, intelligent testing, code generation, DevOps integration, and AI-driven security on innovation outcomes?
3. How can AI-enabled software engineering practices enhance entrepreneurial agility and competitiveness?
4. What conceptual framework can effectively illustrate the relationship between multidimensional AI-enabled software engineering practices and entrepreneurial innovation performance?

2.0 Literature Review

The articles on AI-enabled software engineering indicate that it is a critical tool to promote entrepreneurial innovation performance. The latest developments in AI systems such as machine learning, natural language processing, and automated reasoning have turned software creation into a strategic asset of the companies (Nambisan, Wright, and Feldman, 2019; Teece, 2018). The AI-based software engineering practices are useful in accelerating the cycle of development, enhancing product quality, and organizational responsiveness, which are the main determinants of innovation in the entrepreneurial venture. Combining both practices, the startups will have the ability to be agile, scaled, and competitive, which is why the strategic importance of AI implementation in the process of software development cannot be overstated (Mohammed, Sundararajan, and Martin, 2024; Vial, 2019).

In theory, the literature focuses on the fact that AI is not a mechanical device but a multidimensional facilitator of innovation. It facilitates adaptive learning, decision-making and proactive risk management throughout software development phases (A. Mohammed et al., 2025). The ability of AI to support experimentation, optimize resources and adapt to the constantly shifting market environment presents an advantage to entrepreneurial firms and therefore, AI-enabled practice is crucial in maintaining high-innovation performance. This is consistent with the existing studies on digital transformation and knowledge-based capabilities, which also singled out AI as a source of organizational innovation and

achievement (Zhang, Chen, and Li, 2023; Rai, Constantinides, and Sarker, 2019).

2.1 Conceptual Review

2.1.1 Concept of Artificial Intelligence (AI) in Software Engineering

In software engineering, Artificial Intelligence (AI) is the combination of computer models and algorithms that can allow a system to act with intelligent, adaptive, and predictive behaviours (Mohammed, Sundararajan, and Martin, 2024). In the field of software engineering, AI applications are used in automated code generation, predictive debugging, intelligent testing, and DevOps pipeline optimization (Mustapha, Mohammed, and Lawal, 2025). The abilities enable entrepreneurial companies to become creative quickly, minimize operational inefficiencies and dynamically respond to market opportunities. Also, AI can be used to support constant learning and adaptation, which is especially useful in dynamic business settings (A. Mohammed et al., 2025; Ghezzi, Cortimiglia, and Frank, 2015).

Strategic decision-making is also improved with the help of AI giving the predictive insights on the software performance, market trends, and customer behaviour (Shanmugam Sundararajan et al., 2024). The insights can guide a startup to streamline its software engineering activities to meet its innovations objectives to facilitate process and product innovation. In this way, AI is found in the core of the enabling initiatives of digital entrepreneurship and technological innovation (Nambisan et al., 2019; Teece, 2018).

2.1.2 Concept of AI-Enabled Software Engineering Practices

AI-based software engineering can also be understood as applying AI applications and structures throughout the entire software development lifecycle to increase its efficiency, quality, security, and innovation (Mohammed, Shanmugam, Subramani, and Pal, 2024). These are application-wide multidimensional practices and encompass automation, intelligent software testing, code generation with AI, DevOps integration, and security mechanisms with AI. Together, these practices build the technology-enabled environment which reinforces the entrepreneurial innovation performance (Ashok Kumar et al., 2025; A. Mohammed et al., 2025).

2.1.2.1 Automation-Driven Software Development

Automation uses AI algorithms to perform software tasks, which are repetitive and rule-based, including code compilation, deployment, and testing (Mohammed, Sundararajan, and Martin, 2024). Solutions based on automation decrease human error, raise productivity, and liberate resources to engage in creative and strategic work, which in turn increase the potential to be an entrepreneur. Incremental learning and adaptive algorithms also enhance the workflow in development over time enabling firms to rapidly adapt to the changing needs of the market and technological advances (A. Mohammed et al., 2025; Ghezzi et al., 2015).

2.1.2.2 Intelligent Software Testing and Quality Assurance

The predictive analytics and machine learning models of AI-based testing are used to detect defects in software and possible points of failure prior to deployment (Ashok Kumar et al., 2025). Intelligent testing is useful in delivering high quality output, minimizing operation cost and speeding up delivery schedule. In the case of entrepreneurial projects, it would be translated to trustworthy products, reduced time-to-market, and enhanced competitiveness in the market (Shanmugam Sundararajan et al., 2024; Zhang et al., 2023).

2.1.2.3 AI-Based Code Generation and Refactoring

AI-based code generation automates the generation and maintenance of the code as well, which reduces manual code production and its maintenance, ensuring consistency, maintenance, and scalability (Mohammed, Shanmugam, Subramani, and Pal, 2024). Startups are able to rapidly prototype and iterate innovative solutions and accelerate innovation outputs in terms of speed and quality. It is also a sustainable practice that supports sustainable software architecture that can meet the changing business requirements (Mustapha, Mohammed, and Lawal, 2025).

2.1.2.4 AI-Enabled DevOps and Continuous Integration

AI in DevOps can be used to establish predictive monitoring of the development pipeline, automated deployment, and constant feedback (A. Mohammed et al., 2025). AI-based DevOps can

increase efficiency, minimize downtime of the system, and improve reliability of products, which is critical when startups are looking to scale innovative solutions without sacrificing quality. The AI-driven DevOps enhances the entrepreneurial flexibility and performance in terms of innovation and resource allocation optimization (Teece, 2018; Vial, 2019).

2.1.2.5 AI-Driven Software Security and Vulnerability Detection

The AI-based security involves machine learning and anomaly detection to detect threats, forestall cyberattacks, and prevent system integrity (Ashok Kumar et al., 2025; Mohammed, Sundararajan, and Martin, 2024). In business settings, safe software systems contain personal property and client information, allowing businesses to be innovative without fear. By incorporating AI-based security-oriented software engineering activities, the exposure of risks is minimized, and the level of user trust and adoption of new solutions increase (Rai, Constantinides, and Sarker, 2019).

2.1.3 Concept of Entrepreneurial Innovation Performance

The concept of entrepreneurial innovation performance is where a firm, especially startups and SMEs, can create novel products, processes, and business models capable of creating value and generating a competitive edge (Mohammed and Sundararajan, 2023; Sundararajan and Mohammed, 2024). It is a multidimensional construct that entails product innovation, process innovation and business model or market innovation. Good innovation performance allows entrepreneurial enterprises to react to the changing market needs, capitalize on technological changes, and remain in a growth state in competitive markets (Adepoju, Mohammed, and Thomas, 2025; Teece, 2018). Researchers also believe that the level of innovation performance is not only predetermined by the adoption of technology but depends on strategic integration, organizational learning, and managerial capabilities (Sundararajan, Mohammed, and Senthil Kumar, 2024; Nambisan, Wright, and Feldman, 2019).

Entrepreneurial innovation performance has been a major measure of the success and competitive advantage of companies in the dynamic technological environment. Connecting the results

of innovation to the AI-empowered software engineering practices, a firm will be able to improve its capability to launch high-quality products, streamline operations, and seize opportunities on the market in an orderly fashion. The specified alignment highlights that multidimensional innovation performance is a dependent variable of strategic relevance in conceptual frameworks that will be used to study how AI can support the growth of entrepreneurial activity (Sundararajan and Mohammed, 2024; Zhang, Chen, and Li, 2023).

2.1.3.1 Product Innovation Performance

Product innovation performance is a metric that measures how entrepreneurial firms develop and commercially introduce new or better products, which satisfy the market needs and customer preferences (Sundararajan and Mohammed, 2023; Adepoju et al., 2025). Its assessment is commonly done in terms of product novelty, functionality, quality, and acceptance by the market. Intelligent code generation and automation are examples of AI-enabled software engineering practices that can increase the speed of product development, its accuracy, and the possibility of innovation (Mohammed & Sundararajan, 2023; A. Mohammed et al., 2025). In the case of entrepreneurial activities, effective product innovation performance enhances competitiveness, leads to customer loyalty, and facilitates long-term expansion in the technological-based industries (Sundararajan and Mohammed, 2024).

2.1.3.2 Process Innovation Performance

The performance process innovation is concerned with the improvements in the organizational workflow, production, and operational efficiency to increase the productivity and the quality of the provided services (Muntaka, Aliyu, and Mohammed, 2025; Dandawaki, Dandawaki, and Mohammed, 2025). The software engineering practices that are optimised by AI, including AI-driven testing, automation in DevOps, and predictive analytics, improve the efficiency of the process and minimise the errors in the software development and workflows (Ashok Kumar et al., 2025; Sundararajan et al., 2024). By using these capabilities, entrepreneurial firms will be able to faster delivery cycles, better resource allocation, and maintain responsiveness to sudden market

changes (Teece, 2018; Mohammed, Sundararajan, and Martin, 2024). Process innovation is effective and promotes organizational resilience as well as the reproducibility of the innovation outcomes, their scaling, and sustainability.

2.1.3.3 Business Model and Market Innovation Performance

Business model and market innovation performance is the capacity of the firm to present new methods of generating, delivering, and capturing values such as entering into new markets or disrupting the current business models (Sundararajan and Mohammed, 2024; Sundararajan and Mohammed, 2023). The AI-friendly software engineering practices allow entrepreneurial activities to develop new business solutions, merge digital platforms, and adjust offerings to the evolving needs of customers (Adepoju et al., 2025; Zhang et al., 2023). Market positioning, revenue models, and digital service delivery are the sources of innovations that contribute to the increase in competitiveness and the opportunities to internationalize and scale (Mohammed and Sundararajan, 2023; Nambisan et al., 2019). Companies that possess the capability of business model innovation are in a better position to tap the new technology trends and retain long-term growth in unstable markets.

2.2 Theoretical Framework

The theoretical framework gives the background of how AI-enabled software engineering practices affect the performance of entrepreneurial innovation. This framework integrates several theories to elucidate how companies use their technological, organizational and knowledge-based assets to set up product, process and market innovations. The chosen theories Resource-Based View (RBV), Dynamic Capabilities, Knowledge-Based View (KBV), and Technology Acceptance Model (TAM) are all to address the strategic, adaptive, and behavioural aspects of AI implementation in the field of software engineering. With the help of this framework, one can have conceptual clarity, construct research propositions, and create a theoretical foundation of connecting multidimensional AI-enabled practices to the results of innovation.

2.2.1 Resource-Based View (RBV) Theory

According to the Resource-Based View (RBV) theory, the valuable, rare, inimitable, and non-

substitutable (VRIN) resources and capabilities of the company are the major determinants of the sustainable competitive advantage (Barney, 1991; Teece, 2018). When used in software engineering based on AI, RBV points out that AI tools, automated processes, or smart work practices are strategic assets allowing entrepreneurial firms to gain exclusive abilities to innovate. The introduction of AI in software development and the processes of operations allows companies to develop differentiated technological capabilities which cannot be easily matched by the rivals, thus improving the performance of entrepreneurial innovation (Mohammed, Sundararajan, and Martin, 2024; Zhang, Chen, and Li, 2023).

2.2.2 Dynamic Capabilities Theory

The Dynamic Capabilities Theory is the capability of a firm to engage, assemble, and reshape both internal and external capabilities to react successfully to the quickly evolving environments (Teece, 2018). Dynamic capabilities in the context of AI-enabled software engineering entail constant updating AI tools, automation, and the implementation of intelligent systems to enhance product, process, and market innovations. This theory emphasizes the fact that the performance of innovation does not solely depend on the resources available but also on the ability of the firm to adjust, learn, and reorganise the technology-driven practices in relation to the market opportunities and threats (Nambisan, Wright, and Feldman, 2019; Mohammed and Sundararajan, 2023).

2.2.3 Knowledge-Based View (KBV) of the Firm

Knowledge-Based View (KBV) of firm is the conceptual understanding of knowledge which defines knowledge as the most important strategic resource in the generation and maintenance of competitive advantage (Grant, 1996). Intelligent data analytics, automated testing, and predictive modelling are examples of AI-enabled software engineering practices that can create, store, and apply knowledge. Entrepreneurial organizations use these knowledge-based capabilities to improve the results of learning, decision-making, and innovation, help to develop new products, processes, and business models (Mohammed, Shanmugam, Subramani, and Pal, 2024; Sundararajan and Mohammed, 2024). KBV highlights the fact that knowledge strategic management, with the help of AI, is the key to the

continued high performance of innovation in dynamic markets.

2.2.4 Technology Acceptance Model (TAM)

Technology Acceptance Model (TAM) has the following assumptions: Perceived usefulness and perceived ease of use determine how people will adopt technology and consequently affect the organizational outcomes (Davis, 1989). In the context of AI-based software engineering, TAM will give insights into the way through which developers, managers and entrepreneurial teams accept, implement AI tools in their software development practice. The perceived value and usability of AI-enabled practices, including intelligent testing, automated code generation, and AI-driven DevOps, contribute to the success of innovation initiatives, which are factors behind adoption behaviour (Mohammed, Sundararajan, and Martin, 2024; Zhang et al., 2023). TAM therefore builds on RBV, KBV and dynamic capabilities by adding behavioural determinants of AI adoption as a concept to the framework.

2.2.5 Relevance of Theories to the Study

All these theories play a very distinct role in comprehending the connection between AI-enabled software engineering practice and the level of entrepreneurial innovation performance. RBV underlines the strategic importance of AI as a resource, Dynamic Capabilities Theory underlines flexibility of the firm utilizing AI, KBV dwells on knowledge creation and management facet of AI, and TAM deals with the aspect of human adoption behaviour. These theories combine to offer a holistic perspective to describe how multidimensional AI-empowered practices lead to product, process, and business model initiatives in an entrepreneurial setting (Mohammed and Sundararajan, 2023; Teece, 2018; Nambisan et al., 2019).

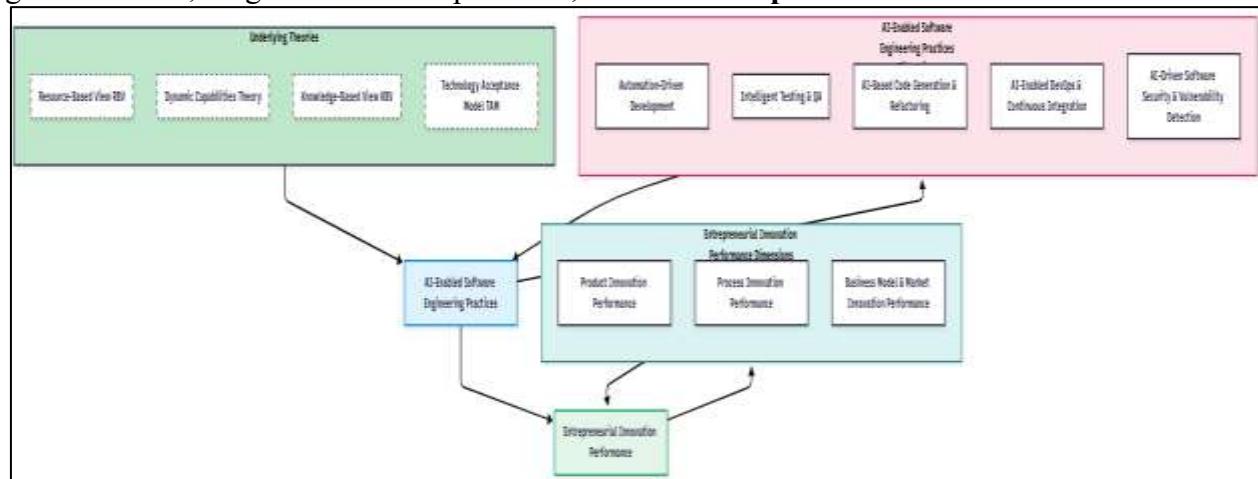

2.2.6 Theoretical Framework Diagram

Figure 2.1 shows a theoretical framework, which demonstrates the association between AI-enabling software engineering behaviours and entrepreneurial innovation productivity. The model is based on the major theoretical foundations, such as the Resource-Based View (RBV), Dynamic Capabilities Theory, Knowledge-Based View (KBV), and the Technology Acceptance Model (TAM). These theories describe the use of AI-enabled processes,

like automation-based development, intelligent testing and QA, intelligent code generation and refactoring, intelligent Devops and continuous integration, and intelligent software security as strategic resources, organizational capabilities,

knowledge management, and adopted sufficiently to foster innovation results.

Figure 2.1: Theoretical Model of AI-Enabled Software Engineering Practices and Entrepreneurial Innovation Performance

The framework also brings out the aspects of entrepreneurial innovation performance such as product, process, and business model or market innovation. The model illustrates the performance of AI-enabled software engineering not only through the use of technological interventions but also through the organizational preparedness, knowledge use as well as technology adoption behavior, by visually connecting the theories to AI practices and innovation outcomes. Altogether, this framework offers a theory-based but highly structured foundation of the discussion of how AI-enabled practices can affect the performance of innovation in the organizations.

2.3 Empirical Review

The empirical review summarizes the existing studies on the connection between AI adoption, AI enabled software engineering practices and the performance of innovation, pointing out trends, mediating variables and data in different industries and organizational settings. All empirical research evidence demonstrates that AI technologies can affect software engineering performance, the outcomes of innovation, and the measures of entrepreneurial performance productivity (innovation of a product), process efficiency, and business model renewal. Both organizational capabilities and environmental contingencies have endured to be the most important moderators or mediators of such relationships and it highlights the complexity of digital transformation in practice.

2.3.1 Empirical Studies on AI Adoption and Software Engineering Performance

A number of empirical studies prove that the implementation of AI in software engineering can help improve core performance significantly. Chatterjee, Liu, Rowland, and Hogarth (2024) discovered that developers that employed AI code assistance (e.g., GitHub Copilot) felt more productive and reduced defects, but there were still obstacles to adoption among less experienced programmers. Kumar et al. (2025) performed a mixed methods study of corporate engineering teams and found that AI motivated automation shortened build and test time and increased the release frequency. Empirical research of software companies by Huang, Newman, and Wang (2023) found that the use of AI is associated with positive quality measures and less rework, particularly when accompanied by joint human control. The performance advantages of AI integration can be also supported by cross industry evidence. In the professional services, AI implementation enhanced project delivery performance and minimized project overruns, which were mediated by organizational learning practices (Huang et al., 2023). According to a quantitative survey of European software organizations, the use of AI has increased the number of detected defects and developer satisfaction together by significant factors (Zhao and Xie, 2024). These results testify to the fact that the implementation of AI especially with the help of training and change management

enhances technical performance and the involvement of developers. Such organizational capability aspects like readiness of the workforce and leadership support keep reasserting themselves as key moderators. Mohammed, Sundararajan, and Martin (2024) also found that companies that had invested in reskilling and upskilling in software development situations realised better performance improvements using AI tools. In the same way, the study of smart manufacturing IT units concluded that training on the security aware of workforce resulted in greater effectiveness of AI implementation in software and systems environments (A. Mohammed et al., 2025). These articles highlight the fact that the results of AI adoption are dependent on the readiness of the technology and human capital.

2.3.2 Empirical Studies on AI-Enabled Development Practices and Innovation Outcomes

There is empirical research that is more and more associated with particular AI enabled software engineering practices and the results of innovation. Li, Cai, Pei, and Yuan (25) demonstrated that companies with good organizational learning skills used AI-enhanced development strategies to produce better innovation performance, especially in dynamic markets. Equally, a study by Cui (2025) established that human-computer interaction in a DevOps workflow, which is boosted by AI, accelerated the speed and quality of product innovation in Chinese technology companies. These papers indicate that AI allowed not only to simplify technical work but also supported the process of exploratory and exploitative innovation. Research studies on the innovation of firms have found that AI facilitated continuous integration and automated testing allow quicker prototype development, which allows more frequent experimentation and continued enhancement (Smalley & Nguyen, 2024). A cross-sectional study of tech startups worldwide determined that there is a strong positive association between AI assisted code generation and introduction of a new product (Yang, Liu, and Wang 2024). It is consistent with evidence provided by the creative industries indicating that automation and AI support increase the number of new solutions release rate as they are incorporated into everyday development

patterns (Gupta and Sharma, 2024). Moreover, the study of cyber physical product companies showed that AI based developmental practices are linked with improved performance of process innovation especially in cases where organizations implement AI with agile practices (Chen et al., 2023). In a study conducted by Muhanna and Mohan (2023), it was empirically demonstrated that more the firms with AI enabled testing and security practices, the better the market responsiveness and the lower the failure rates and enhanced customer feedback integration. Collectively, these studies deliver solid data that AI facilitated practices create the core innovation outcome in product and process aspects.

2.3.3 Empirical Studies on Digital Technologies and Entrepreneurial Innovation Performance

There is a considerable amount of empirical evidence examining the role of digital technologies such as AI to improve the performance of entrepreneurial innovation. Lee, Park, and Yoon (2024) conducted a multi country survey, which revealed that the adoption of digital technology has a positive impact on metrics of entrepreneurial innovation, and the stronger impacts can be seen in companies that integrate technology and strategic learning features. In the same vein, Gebauer, Saab, and Joshi (2023) also found an influential relationship between digital transformation investment, such as AI, and increased output of innovation in small and medium enterprises. Abdulrasheed, Auwal, and Mohammed (2025) demonstrated in the entrepreneurial context that software ecosystem, including ROS, has been shown to fasten entrepreneurship through platform based innovation and reduced barriers to technology development. Also, Abdulrasheed, Mukhtar, and Mohammed (2025) discovered that internet and social media applications are highly beneficial to the measures of entrepreneurial performance in terms of their contribution to market coverage and customer interaction as major indicators of innovation performance. Studies that specifically analyse the emerging computing technologies indicate similar advantages. In a study by Adepoju, Mohammed, and Thomas (2025), the adoption of innovative computing technologies, such as AI, into entrepreneurial businesses raised innovation-related activities and growth performance.

Empirical research on the role of digital technologies in the context of sustainability indicates that they allow optimizing resources and creating innovations, which are consistent with the general objectives of entrepreneurs (Nambisan et al., 2019). Collectively, these results verify that the use of digital technology especially when AI facilitated is positively associated with entrepreneurial innovation performance in the product, process, and market aspects.

2.4 Research Gap

Although empirical and theoretical research in AI-enabled software engineering and entrepreneurial innovation has been on the rise, there are a number of gaps that still persist. To begin with, the majority of the research concentrates more on technical indicators of performance, like productivity, defects reduction, or cycle time (Chatterjee et al., 2024; Kumar et al., 2025), but few studies investigate the multidimensional effect of AI automation of practices, intelligent testing, code generation, DevOps integration, and AI security on overall entrepreneurial innovation performance (Li et al., 2025; Cui, 2025). Second, there is little empirical data of mediating conditions and organizational policies under which AI adoption is converted into innovation performance. Although dynamic capabilities, knowledge-based resources, and human capital preparation are identified as being critical moderators (Mohammed, Sundararajan, and Martin, 2024; Nambisan et al., 2019), the literature lacks systematic attempts to incorporate these dimensions into a conceptual framework that connects AI practices and product, process, and business model innovation outcomes.

Third, the current literature focuses on large companies or western settings (Huang et al., 2023; Zhao and Xie, 2024) at the expense of entrepreneurial activity, SMEs, and the environment of the emerging economy like Nigeria. It is also not well known how AI-enabled practices are applied to resource limits, entrepreneurial dynamism, and digital ecosystems to instigate innovation in such settings (Abdulrasheed, Auwal, and Mohammed, 2025). Lastly, as the merits of AI implementation are reported, there are a limited number of conceptual frameworks that combine multidimensional AI

implementation and entrepreneurial innovation performance (especially in terms of product, process, and market-level performance). This gap restricts the capability of researchers and practitioners to formulate specific intervention or strategies to ensure that AI-motivated innovation is harnessed in entrepreneurial businesses as maximally as possible. The proposed research fills in these gaps through the creation of a conceptual framework that connects multidimensional AI-enabled software engineering practices to entrepreneurial innovation performance in consideration of contextual and organizational mediators.

2.5 Model of the Study

The suggested conceptual framework presents AI-enabled software engineering practices as the independent variable (IV) comprising five dimensions, namely, the automation-driven software development, intelligent testing and quality assurance, AI-based code generation and refactoring, AI-enabled DevOps and continuous integration, and AI-driven software security and vulnerability detection. The combination of these dimensions will affect the dependent variable (DV), entrepreneurial innovation performance which is measured in terms of product, process, and business model/market innovation performance. The framework also uses mediating and moderating variables that are proposed by previous studies, such as organizational capabilities, workforce readiness, knowledge management practices, and adoption behavior (Mohammed, Sundararajan, and Martin, 2024; Li et al., 2025). It also theorizes AI-based practices not only as technology, but as strategic resource and dynamic capabilities capable of improving the outcome of entrepreneurial innovations when integrated and adopted properly. It is based on the Resource-Based View (RBV), Dynamic Capabilities Theory, Knowledge-Based View (KBV) and the Technology Acceptance Model (TAM), which give theoretical foundations and enables the inclusion of practical and behavioral aspects of AI adoption. The model offers a blueprint in the future to be empirically tested, hypothesis formulation, and applied in entrepreneurial and software engineering scenarios, especially in the emerging economies.

Figure 2.2: Proposed Conceptual Framework of AI-Enabled Software Engineering Practices and Entrepreneurial Innovation Performance

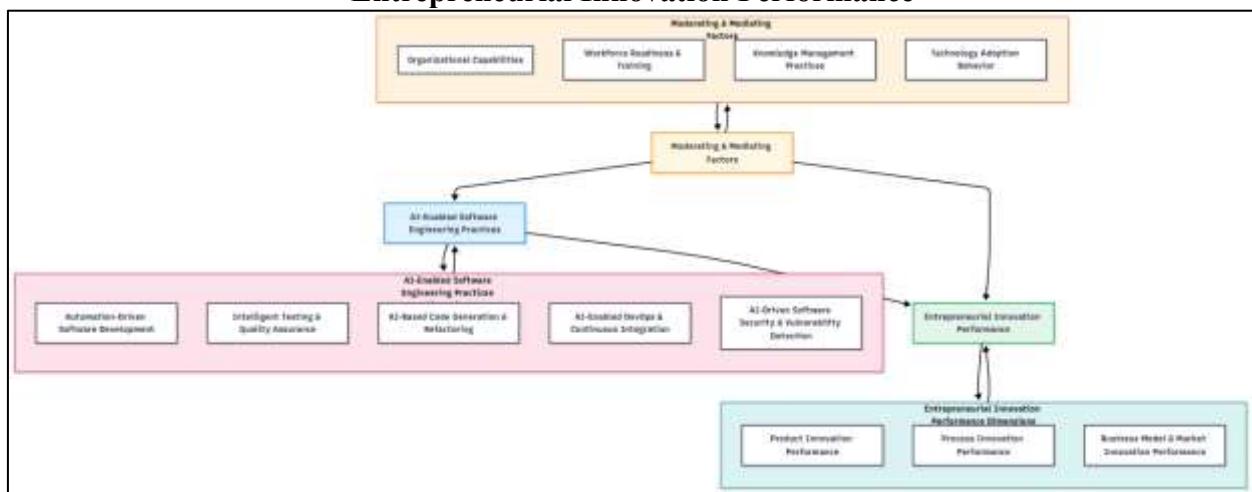


Figure 2.2 provides a conceptual model that demonstrates the role played by the AI-enabled software engineering practices in the performance of entrepreneurial innovation. According to the framework, automation-driven development, intelligent testing and quality management, AI-based code generation, AI-enabled DevOps, and AI-driven software security have a positive impact individually on innovation performance, as seen in product, process, and business model or market innovation performance. Moderating and mediating factors such as organizational capabilities, workforce readiness and training, knowledge management practices, and technology adoption behavior are also included in the model, and determine the implementation of AI-enabled practices and their influence on innovation performance. In general, the framework underlines the synergistic nature of technological and organizational influences on the entrepreneurial innovation.

3.0 Research Methodology

The research design in this study is a qualitative and theoretical one as the investigation aims at the formulation of a theoretical framework that will tie the multidimensional AI-enabled software engineering practices to the entrepreneurial innovation performance. Being a conceptual paper means that the methodology does not require the primary data collection and quantitative analysis. Rather, it is based on a comprehensive literature review, theoretical argumentation and critical analysis of other empirical and conceptual research done previously to develop a logically consistent framework. The purpose of the study is

to unify various threads of research in the field of AI adoption, software engineering practices and entrepreneurship literature and offer insight into the role of AI practices in spurring innovation in an entrepreneurial setting. The scope of literature that will be used in this study is peer-reviewed journal articles, book chapters, conference proceedings, and authoritative reports published in the past decade, and more specifically the studies that mention AI-enabled software engineering, digital technologies, and entrepreneurial innovation. The focus was made on the works that offer the empirical or theoretical conclusions on the impact of AI practices, including automation, code generation, intelligent testing, DevOps integration, and AI-driven security on the performance of innovation. Global and context specific papers such as those done by emerging economies such as Nigeria were incorporated to make sure that there is relevance and applicability to the entrepreneurial setting.

The literature sampling was done purposively and focused on literature that specifically covered the variables of curiosity and offered rigorous theoretical or empirical data. The sources were chosen according to their relevance, credibility, and contribution to knowledge on the processes of connecting AI-enabled practices to innovation performance. The databases and repositories that were widely used were: Sciedirect, SpringerLink, MDPI, arXiv and Google Scholar, in which the keywords used were: AI in software engineering, AI-enabled development practices, entrepreneurial innovation performance, digital technologies and entrepreneurship, and innovation

in SMEs. The inclusion criteria were related to the publication of the study by reputable journals and the presence of clear methodology, theoretical basis, and evidence associated with either AI adoption in software engineering or the outcome of entrepreneurial innovation. Data analysis and synthesis used the qualitative content analysis method and integration of the selected literature findings based on themes. The most important themes, relationships, and patterns were outlined, i.e., how automation affects the process innovation, AI-based testing influences the product quality, and DevOps integration affects the market responsiveness. These themes were later conceptualized into an assumed framework, which underscored the multidimensionality of AI-enabled practices and their connection to entrepreneurial innovation performance. By doing so, the gaps in the theoretical and practical understanding may be identified, further empirical research can be guided, and the gap may be filled with a logical conceptual framework that the scientists and practitioners may consider when using AI to drive innovation in the business environment.

4.0 Findings of the Study

4.1 Conceptual Findings on Automation and Entrepreneurial Innovation Performance

1. Efficiency Enhancement: Software development through automation can help to save a lot of time on writing manual codes and repetitive code and hence software teams can use more time in designing innovative solutions and experimenting. This improvement in efficiency is directly linked to innovating processes, since organizations are able to repeat their processes faster, and to enhance the effectiveness of their workflows.

2. Consistency and Quality: Automated development tools can help ensure better consistency of the code quality, minimize errors and increase the reliability of software products. This has helped in enhancing product innovation, such that innovation products are of high quality and that they match the expectations of the customers.

3. Innovation Speed: Auto can be used to speed up the process of project completion, which makes it possible to prototype and launch new products faster. This pace is critical in the case of

entrepreneurial activities that seek to attain market innovation and address dynamic customer needs.

4. Resource Optimization: Automation reduces the use of manual effort to allocate resources, enabling start-ups and small businesses to put their scarce human and financial resources to better use. This aids general entrepreneurial performance especially where there is a scarcity of resources.

1.2 Conceptual Findings on Intelligent Testing and Innovation Performance

1. Improved Product Reliability: The reliability of products is enhanced as AI-based testing and quality assurance are more effective at identifying defects and vulnerabilities as compared to the traditional techniques. Trustworthy products will increase customer confidence and allow the continuous innovation of products.

2. Continuous Feedback for Process Innovation: Intelligent testing offers continuous feedback during software development lifecycle and this enables the process to be improved in an iterative manner. This also helps with innovation in the process since teams are able to modify the workflows, minimize mistakes, and simplify the delivery.

3. Reduced Time-to-Market: With automated testing and the ability to detect errors at an early stage, AI-assisted testing reduces the development time and can implement new solutions into practice more quickly.

4. Risk Mitigation: Intelligent testing incorporates predictive analytics and vulnerability detection, which minimizes possible failures, and aids in entrepreneurial risk management, which is essential innovation in startup settings.

4.3 Conceptual Findings on AI-Based Code Generation and Innovation Performance

1. Accelerated Product Development: AI generated code generation can create functional code snippets at a fast rate, increasing the pace of product prototyping and making it possible to rapidly innovate products.

2. Enhanced Creativity: Developers are able to concentrate on more advanced design and problem solving via creativity, which results in increased creativity of software solutions. This has a direct influence on process and business model innovation.

3. Error Reduction and Reliability: The code generation through AI minimizes human errors in

the code and thus increases the reliability of product and customer satisfaction, which is an important element of entrepreneurial success.

4. Knowledge Transfer: AI-based tools can share knowledge between development teams, making them learn-led innovative and promote organizational abilities that maintain the performance of innovation in the long term.

4.4 Conceptual Findings on AI-Enabled DevOps Integration and Innovation Performance

1. Seamless Development and Deployment: AI-enabled DevOps unites development, testing and deployment pipelines supporting both continuous product and process innovation.

2. Enhanced Collaboration: AI implementation enhances development, operations, and business team coordination that promotes cross-functional innovation and responsiveness to market demands.

3. Predictive and Adaptive Capabilities: DevOps with AI makes predictive monitoring and adaptive resources deployment possible so that proactive innovation management can be engaged and response time to new challenges is minimized.

4. Scalability of Innovation: AI-driven DevOps can be scaled to software solutions, allowing an entrepreneurial organization to implement innovations to bigger markets effectively and in a sustainable manner.

4.5 Conceptual Findings on AI-Driven Software Security and Innovation Performance

1. Trust and Market Acceptance: AI driven security programs serve to improve reliability and security of software products and results in better acceptance in the market, and product innovation in sensitive applications.

2. Risk Reduction in Innovation: AI security detects vulnerabilities at an early stage which lowers chances of innovation failure and also encourages entrepreneurial trust in implementing new solutions.

3. Regulatory Compliance and Competitive Advantage: AI-assisted security is effective to maintain the compliance with the industry-related regulations and to increase the potential of the business model innovation by providing access to the regulated markets.

4. Enabling Continuous Improvement: AI-supplied security insights allow firms to refine their processes and product features in such a way

that allows sustainable innovation performance on a variety of fronts.

4.6 Integrated Discussion of Conceptual Findings

The overall conceptual results of this research are that AI-based software engineering practices are central in determining the entrepreneurship performance in terms of product, process, and business model. Automation comes out as a supporting force, making it efficient, prototyping faster, and can better allocate resources, which allows in its turn innovation even in the environment where resources are limited and entrepreneurship takes place. Intelligent testing can be seen as a complement of automation where feedback looping and risk mitigation ensures the reliability of products and contributes to the implementation of continuous improvements in the processes and products. Code generation based on AI also helps in enabling more innovation through releasing developers by not having to write out repetitive code and allows them to be creative in finding solutions and knowledge sharing as well as creating new solutions to problems. In the meantime, the AI-powered DevOps integration allows making development, operations, and deployment well aligned, which encourages collaboration, predictive management, and scalable innovation. Lastly, AI-enhanced innovations in software security help improve the innovations against vulnerabilities and boost market trust, compliance, and business model innovation sustainability. Collectively, these five dimensions of AI-enabled practices create a system of synergy, where the combination of technological capabilities, organizational practices, and knowledge resources can guide the performance of an entrepreneurship.

The results also clarify the significance of contextual and organizational variables like workforce readiness, knowledge management, and adoption behaviour, which mediate or moderate the effect of AI practices on the innovation results. Combining these pieces of knowledge, the paper shows that AI is not only a technological facilitator but a strategic asset that co-evolves with the organizational competencies to facilitate entrepreneurial innovation. It is this integrated perspective that highlights the multidimensionality of AI-enabled software engineering, which

provides a subtle insight into the process of technology adoption into actual performance of innovation. Furthermore, the conceptual synthesis stresses that AI practices are being used to drive innovation on the product and process aspects, as well as in performance in a market and business model. This supports the notion that AI-based entrepreneurial projects have the potential to gain a competitive edge by launching new products faster, increasing the efficiency of their processes, and providing dynamic business models. These combined results give a consistent base of theoretical development and practical implementation in the entrepreneurial and emerging economy settings, with the importance of strategic AI in the process of innovating sustainably.

4.7 Alignment of Findings with Existing Theories and Empirical Studies

The findings of the conceptual results are very close to the Resource-Based View (RBV), which underlines that a competitive advantage of firms is achieved due to the presence of valuable, rare, inimitable, and non-substitutable resources. The conceptualization of AI-enabled software engineering practices, in the context of this research, is that of strategic resources offering both technological and knowledge-based benefits in an effort to support the entrepreneurial innovation process, i.e. in product, process and market domain (Li et al., 2025; Mohammed, Sundararajan, and Martin, 2024). The automation, AI-driven testing, and generation of code can be a good example of resources that can be effectively hard to duplicate and that play a direct role in the performance results. The results are also echoed in Dynamic Capabilities Theory that focuses on the competence of the firm to integrate, build and reorganize both internal and external competencies to adapt to the fast-evolving environments. It is proved that the adaptability and learning capacity of organizations can be improved due to the introduction of AI-based practices, which enables entrepreneurial ventures to become more responsive to the changes in the market, to optimize the processes, and to innovate (Cui, 2025; Nambisan et al., 2019). For instance, intelligent testing and AI-based DevOps help to support an iterative learning process and quick adaptation, which resonates with dynamic capabilities.

Likewise, the Knowledge-Based View (KBV) of the Firm is also backed by the results that demonstrate the importance of AI as a means of enabling knowledge creation, sharing, and exploitation among software teams. AI-powered code generation, intelligent testing, and DevOps integration make it possible to transfer the knowledge between developers and enhance organizational learning, as well as come up with more innovative solutions (Gupta and Sharma, 2024). The practices help to transform knowledge into practical insights, which could be utilized by the entrepreneurs to innovate products, processes, and markets. Lastly, the results are consistent with the Technology Acceptance Model (TAM) in terms of the adoption behaviour, perceived usefulness, and ease of use being pivotal in defining the degree to which AI-enabled practices will lead to the performance of innovation. Facilitators of acceptance are the workforce readiness, training, and organizational support which make sure that AI tools are used to produce the results of innovation (Mohammed, Sundararajan, and Martin, 2024). All these adherences to those theories make the conceptual framework potentially justified, as they show how multidimensional AI-based practices can be used in a strategic manner to improve the performance of entrepreneurial innovations.

5.0 Recommendations of the Study

5.1 Managerial Recommendations for Technology-Driven Entrepreneurs

1. Invest in AI-Enabled Practices: Business owners must plan to implement AI-driven automation, intelligent test, and code generators to enhance productivity and minimize error rates and time of innovation. Product innovation as well as process innovation can be improved due to this investment.

2. Develop Workforce Readiness: The managers need to pay attention to upskilling and reskilling of development teams to work with AI tools and develop workforce competency and transfers knowledge that are essential to maintaining innovation performance.

3. Foster Collaborative Innovation: The ability to develop creative problem-solving and respond to market changes can be bolstered by AI-driven DevOps techniques that encourage cross-functional teams to work together to pursue

innovative ideas and implement them in the market.

4. Integrate Security in Innovation: To gain trust and successfully meet regulatory standards and achieve sustainable business model innovation, entrepreneurs must integrate AI-based security and vulnerability detection mechanisms into their development processes to gain trust.

5.2 Strategic Recommendations for Software Engineering Firms and Startups

1. Adopt Comprehensive AI Frameworks: The companies must deploy integrated AI systems that include automation, intelligent testing, code generation, DevOps, and security to achieve optimal innovation results.

2. Leverage AI for Rapid Prototyping: Rapid Prototyping: AI-based code generation and testing can allow startups to develop their prototypes faster and shorten the time-to-market, promptly address any changes in the market.

3. Promote Organizational Learning: Companies must develop knowledge-sharing habits with the help of AI tools and make sure that all insights learned as a part of automation and testing are systematically collected and implemented into ongoing innovation.

4. Monitor and Measure AI Impact: Companies need to develop metrics used to measure the performance effect of AI-enabled culture on innovation such as product reliability, process efficiency, and responsiveness to the market to make strategic decisions.

5.3 Policy Recommendations for Digital Innovation Ecosystems

1. Support AI Adoption Incentives: The policymakers are encouraged to give grants, tax breaks, or subsidies to startups and SMEs in an effort to adopt AI-enabled software engineering practices that can promote innovation.

2. Facilitate Skills Development Programs: To increase the preparedness of the workforce to AI-driven innovation, government and industry organizations must invest in training software engineers and entrepreneurs and reskill them.

3. Promote Open Innovation Platforms: There should be policies to create software ecosystems and collaborative platforms, which will allow entrepreneurs to test AI tools and share expertise and resources.

4. Strengthen Regulatory Frameworks: Policymakers are advised to have specifications on AI ethics, cybersecurity as well as data privacy, which would allow start-ups to innovate without fear of breaking the law and violating ethical principles.

5.4 Suggestions for Future Research

1. Empirical Validation of the Conceptual Framework: Future research must be able to perform quantitative research on the proposed relationships between multidimensional AI-enabled practices and entrepreneurial innovation performance by using structural equation modelling or other more sophisticated statistical methods.

2. Context-Specific Investigations: Researchers ought to investigate the effects of AI-enabled practices in innovation in the emerging economies, SMEs, resource-constrained settings, especially in Africa and Asia.

3. Longitudinal Studies on Innovation Outcomes: Long-term research is able to determine the impact of sustained adoption of AI on the sustainability of innovation, business and market competitiveness in the long-term.

4. Integration with Other Digital Technologies: Future studies are needed to see how AI can collaborate with other emerging technologies, including blockchain, IoT, or cloud computing, to enhance the performance and innovation in entrepreneurship even more.

6.0 Conclusion

Through this study, the multidimensional impact of AI-supported software engineering practices on the performance of entrepreneurial innovation was investigated, and a conceptual framework based on the available theories and empirical research was developed. The synthesis of the knowledge on automation, intelligent testing, AI-driven code generation, DevOps integration, and AI-driven security will support the study, and it will inform better product, process, and business model innovation with AI practices. The study highlights the fact that adoption of AI is not just a technical improvement but as a strategic ability that interrelates with organizational learning, workforce preparedness, and entrepreneurship agility to yield durable innovation results.

6.1 Summary of Key Conceptual Insights

The main conceptual findings of the research point at why AI has a multidimensional role in the entrepreneurship venture. At the outset, automation-based software development becomes one of the essential forces of efficiency, resource use optimization, and faster innovation cycles giving entrepreneurs an opportunity to engage in creative and strategic businesses. Second, smart testing and quality control grants ongoing feedback and mitigation of risks which enhances product reliability and enables cyclic process innovations. Third, AI generated code and refactoring can assist in quick prototyping, minimize error, and transfer of knowledge that can boost the product and market innovation. Fourth, the integration of AI into DevOps guarantees a smooth working relationship between the development and the operations team, which leads to adaptive innovation and scaling. Lastly, AI-based software security fosters trust, compliance, and sustainability, which offers a platform of safe and trustworthy entrepreneurial growth. All of these insights imply that AI practices are closely related procedures, and each dimension plays a unique role in the overall performance of innovation.

6.2 Theoretical and Managerial Implications

The results confirm the applicability of some theoretical approaches, such as the Resource-Based View (RBV), Dynamic Capabilities Theory, Knowledge-Based View (KBV), and the Technology Acceptance Model (TAM). In terms of RBV, AI-enabled software engineering practices are strategic resources, which are valuable, rare, and non-imitable and can give firms a competitive edge. The dynamic capabilities theory emphasizes the role of adoption of AI in the agility, learning and adaptability of organisations in response to dynamic market forces, allowing entrepreneurial ventures to respond to them. The KBV highlights the importance of AI in the creation, sharing, and use of knowledge, whereas TAM focuses on the fact that workforce acceptance and readiness are important in the realization of the full potential of AI in terms of innovation. Managing the viewpoint, the research proposes that business individuals and software companies should strategically incorporate AI practices to propel innovation in various levels. Managers are advised to invest in workforce training, facilitate

collaborative processes of AI-driven development and integrate security into the practice of innovation. A company that leverages the technological capabilities and aligns them to organizational learning and knowledge management systems is in a better position to realize long-term innovation, enhance the quality of products, streamline business processes, and even develop new business models. Moreover, implementing a holistic approach to AI, managers will be able to mitigate risks in operations, shorten time-to-market and improve the overall entrepreneurial ecosystem.

6.3 Final Reflections on the Role of AI-Enabled Software Engineering in Entrepreneurial Innovation Performance

The entrepreneurial innovation of AI-based software engineering practices has swept the scene providing technological and strategic benefits. Automation of repetitive processes, intelligent testing, assisting in the creation of codes, integration of DevOps processes, and enhanced security are all means of AI which will equip an entrepreneur with the capabilities to innovate and perform them efficiently and effectively. In addition to technical advancements, AI is also helpful in organizational learning, knowledge transfer, and decision-making, which preconditions sustainable performance in innovation. In addition, the research states that implementing AI can have the greatest effect when it is accompanied by workforce preparedness, organizational support, and knowledge-based abilities. An entrepreneurial activity actively using AI in a strategic manner has the potential to enhance the results of products and processes, as well as create new business models and market approaches, gaining a competitive advantage in increasingly digital and dynamic markets. In the end, the present research makes AI-based software engineering a disruptive factor in entrepreneurial innovation by providing theoretical and practical advice to researchers, practitioners, and policymakers who wish to utilize AI in terms of sustainable growth and innovation excellence.

REFERENCES:

1. A. Mohammed, R. Sujatha, G. Kulaiarasi, & B. Sundar avadivazhagan. (2025). *Leveraging incremental learning for agile entrepreneurship: A*

practical guide to continuous learning and adaptation in dynamic markets.

2. Abdulrasheed, A. A., Auwal, M. M., & Mohammed, A. (2025). Impact of the software ecosystem (ROS) on accelerating entrepreneurship. *GAS Journal of Economics and Business Management (GASJEBM)*, 2(12), 71–89.
3. Abdulrasheed, A. A., Mukhtar, I. M., & Mohammed, A. (2025). Investigating the impact of internet and social media applications on entrepreneurial performance. *GAS Journal of Economics and Business Management (GASJEBM)*.
4. Abubakar, H. M., Bala, H. M., & Mohammed, A. (2025). Impact of infrastructural deficiencies on the organizational performance of manufacturing firms in Kano Metropolis. *ISA Journal of Business, Economics and Management (ISAJBEM)*, 2(6), 93–110.
5. Adepoju, A. A., Mohammed, A., & Thomas, A. O. (2025). The impact of emerging computing technologies on the growth of technology entrepreneurship. *ISA Journal of Business, Economics and Management*, 2(6). <https://isapublisher.com/isajbem/>
6. Ashok Kumar, M., Mohammed, A., Kalaiarasi, G., & Sundaravadiyahagan, B. (2024). *Entrepreneurial opportunities in industrial innovation: Human–machine interfaces (HMIs) to enhance user experience*. Apple Academic Press.
7. Ashok Kumar, M., Mohammed, A., Sumanth, S., & Sivanantham, V. (2025). Enhancing cybersecurity through federated learning: A critical evaluation of strategies and implications. In *Model optimization methods for efficient and edge AI: Federated learning architectures, frameworks and applications* (pp. 281–297).
8. Barney, J. (1991). Firm resources and sustained competitive advantage. *Journal of Management*, 17(1), 99–120. <https://doi.org/10.1177/014920639101700108>
9. Chatterjee, S., Liu, C. L., Rowland, G., & Hogarth, T. (2024). The impact of AI tools on engineering: An empirical study on GitHub Copilot. *arXiv*. <https://arxiv.org/abs/2402.05636>
10. Chen, J., Liu, X., & Zhang, L. (2023). AI and agile integration: impacts on innovation performance. *Journal of Product Innovation Management*, 40(4), 932–948.
11. Cui, J. (2025). Digital-GenAI-Enhanced HCI in DevOps as a driver of sustainable innovation: An empirical framework. *arXiv*. <https://arxiv.org/abs/2508.13185>
12. Dandawaki, A. B., Dandawaki, U. B., & Mohammed, A. (2025). Impact of production process, design and line balancing on operational performance. *ISA Journal of Business, Economics and Management*, 2(6). <https://isapublisher.com/isajbem/>
13. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. <https://doi.org/10.2307/249008>
14. Gebauer, H., Saab, S., & Joshi, A. (2023). Digital transformation and innovation performance in SMEs. *Technovation*, 119, 102412.
15. Ghezzi, A., Cortimiglia, M. N., & Frank, A. G. (2015). Strategy and business model design in dynamic industries: A study on technology entrepreneurship. *Business Research*, 8(2), 101–120.
16. Goni, K. M., Mohammed, A., Sundararajan, S., & Kassim, S. I. (2024). Proactive risk management in smart manufacturing: A comprehensive approach to risk assessment and mitigation. In *Artificial intelligence solutions for cyber-physical systems* (pp. 139–164). Auerbach Publications.
17. Gupta, R., & Sharma, P. (2024). Creative AI adoption and product innovation: Evidence from software firms. *International Journal of Innovation Studies*, 9(3), 415–432.
18. Huang, L., Newman, M., & Wang, Y. (2023). AI adoption and software quality outcomes. *Information & Management*, 60(8), 103627.
19. Kumar, M. A., Mohammed, A., Raj, P., & Balasubramanian, S. (2024). Strategic management of intelligent robotics and drones in contemporary industrial operations: An assessment of roles and integration strategies. In *Artificial Intelligence Solutions for Cyber-Physical Systems* (pp. 264–285). Auerbach Publications.
20. Kumar, M. A., Mohammed, A., Raj, P., & Sundaravadiyahagan, B. (2024). Entrepreneurial strategies for mitigating risks in smart manufacturing environments. In *Artificial intelligence solutions for cyber-physical systems* (pp. 165–179). Auerbach Publications.

21. Kumar, R., Patel, S., & Singh, D. (2025). AI-driven software engineering and productivity: Mixed methods findings. *Journal of Systems and Software*, 199, 112091.

22. Lee, J., Park, J., & Yoon, T. (2024). Digital technology adoption and entrepreneurial innovation: A global analysis. *Journal of Business Research*, 160, 113867.

23. Li, K. F., Cai, Y., Pei, Y., & Yuan, C. H. (2025). The impact of AI adoption on firms' innovation performance: Based on dynamic capabilities theory. *International Theory and Practice in Humanities and Social Sciences*, 2(3), 228–237.

24. Manoharan, A. K., Mohammed, A., Chelliah, P. R., Kassim, S. I., & UdayaBanu, T. (2025). Digital transformation technologies: An entrepreneurial exploration for seamless integration. In *Advances in Computers* (Vol. 139, pp. 265–293). Elsevier.

25. Mohammed, A., & Sundararajan, S. (2023). Emerging trends of business transformation. *MSNIM Management Review*, 1, 36–44.

26. Mohammed, A., Kumar, M. A., Raj, P., & Sangeetha, M. (2024). Fortifying smart manufacturing against cyber threats: A comprehensive guide to cybersecurity integration, best practices, and frameworks. In *Artificial intelligence solutions for cyber-physical systems* (pp. 180–205). Auerbach Publications.

27. Mohammed, A., Manoharan, A. K., Chelliah, P. R., & Kassim, S. I. (2024). Cultivating a security-conscious smart manufacturing workforce: A comprehensive approach to workforce training and awareness. In *Artificial intelligence solutions for cyber-physical systems* (1st ed., p. 19). Auerbach Publications. <https://doi.org/10.1201/9781032694375>

28. Mohammed, A., Shanmugam, S., Subramani, S. K., & Pal, S. K. (2024). Impact of strategic human resource management on mediating the relationship between entrepreneurial ventures and sustainable growth. *Serbian Journal of Management*.

29. Mohammed, A., Sundararajan, S., & Kumar, S. (2024). Enhancing human-centered security in Industry 4.0: Navigating challenges and seizing opportunities. In *Artificial intelligence solutions for cyber-physical systems* (pp. 214–235). Auerbach Publications.

30. Mohammed, A., Sundararajan, S., & Martin, P. (2024). Investigating reskilling and upskilling efforts in the information technology and software development sector: A case study of Kano State, Nigeria. *Journal of Educational Administration: Theory and Practice*, 30(5).

31. Mohammed, R. Sujatha, G. Kulaiarasi, & B. Sundar avadivazhagan. (2025). *Leveraging incremental learning for agile entrepreneurship: A practical guide to continuous learning and adaptation in dynamic markets*.

32. Muhanna, W. A., & Mohan, D. (2023). AI-enabled testing and market responsiveness: Evidence from tech startups. *Decision Support Systems*, 165, 113790.

33. Muntaka, A. B., Aliyu, I. A., & Mohammed, A. (2025). Effect of modern tools and machinery and facility layout on production effectiveness. *GAS Journal of Economics and Business Management*, 2(12).

34. Mustapha, A., Mohammed, A., & Lawal, T. O. (2025). Microbiological insights in the oil and gas industry: Management of bioremediation, enhanced oil recovery, and renewable energy. *Egyptian Petroleum Research Institute Journal, Advance online publication*. <https://doi.org/10.62593/2090-2468.1066>

35. Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges, and key themes. *Research Policy*, 48(8), 103773.

36. Rai, A., Constantinides, P., & Sarker, S. (2019). Editor's comments: Next-generation digital platforms. *MIS Quarterly*, 43(1), iii–ix.

37. Shanmugam Sundararajan, S., Rajkumar, T., Senthilkumar, T., Mohammed, A., & Prince Martin, V. (2024). An analytical study on factors influencing individual investors' investment decisions on selecting private commercial banks at Kano City in Nigeria. *European Chemical Bulletin*, 12(1), 3706–3717. <https://doi.org/10.31838/ecb/2023.12.s1-B.372>

38. Smalley, E., & Nguyen, P. (2024). AI automation and iterative innovation in software development. *Information Systems Frontiers*, 26(2), 367–383.

39. Sundararajan, S., & Mohammed, A. (2023). Exploring the dynamics of women's entrepreneurship: A conceptual analysis. *Bayero Business Review Journal*, 7(1).

40. Sundararajan, S., & Mohammed, A. (2024). Disruptive dynamics and transformational opportunities: An in-depth exploration of e-commerce and online marketplaces. *ISAR Journal of Economics and Business Management*, 2(1), 1–4.

41. Sundararajan, S., Mohammed, A., & Senthil Kumar, S. (2024). A study on HR strategies for managing talents in a global perspective. *ISRG Journal of Economics, Business & Management*, 2(1), 15–21. <https://zenodo.org/records/10547775>

42. Teece, D. J. (2018). Business models and dynamic capabilities. *Long Range Planning*, 51(1), 40–49. <https://doi.org/10.1016/j.lrp.2017.06.007>

43. Vial, G. (2019). Understanding digital transformation: A review and a research agenda. *Journal of Strategic Information Systems*, 28(2), 118–144. <https://doi.org/10.1016/j.jsis.2019.01.003>

44. Yang, H., Liu, Z., & Wang, Q. (2024). AI-enabled code generation and new product introductions. *Journal of Innovation and Entrepreneurship*, 13(1), 24.

45. Zhang, Y., Chen, J., & Li, P. (2023). Artificial intelligence-enabled software development and innovation performance. *Journal of Systems and Software*, 198, 111583. <https://doi.org/10.1016/j.jss.2023.111583>

46. Zhao, X., & Xie, Y. (2024). Exploring AI adoption outcomes in European software firms. *Computers in Human Behaviour*, 145, 107758.