

Journal home page: <https://ssarpublishers.com/ssarjms>

Abbreviated Key Title: SSAR J Multidiscip. Stud

ISSN: 3049-2041 (Online)

Volume 3, Issue 1, (Jan-Feb) 2026, Page 18-32 (Total PP.15)

Frequency: Bimonthly

E-mail: ssarpublishers@gmail.com

ARTICLE HISTORY

Received: 16-01-2026 / Accepted: 07-02-2026 / Published: 09-02-2026

Impact of Autonomous Agentic Workflows and Integrated DevOps Maturity on Software Startup Time to Market

By

Corresponding authors: Aliyu Mohammed¹, Abdullateef Ajibola Adepoju², Maryam Folakemi Adepoju³

¹Department of Management, School of Arts, Management and Social Sciences, Skyline University Nigeria, Kano.

²Randatech Systems Ltd, Gidan Nasir Ahmed, No. 3 Zaria Road, Opposite Ja'oji Quarters, Kano, Nigeria.

³11 Umaru Muhammadu Street, 65 NNDC Quarters, Hotoro GRA, Kano, Kano State, Nigeria.

ABSTRACT: The rapid evolution of software startups has created a critical need to accelerate time to market, a factor that determines competitive advantage and entrepreneurial success. Nevertheless, lack of efficiencies in the classical development processes and disjointed deployment cycles tend to make startups fail to meet product releases in time. This study conceptually examines the impact of autonomous agentic workflows and integrated DevOps maturity on software startup time to market. The objectives include analysing how AI-enabled workflows improve development efficiency, evaluating the role of DevOps practices in streamlining software delivery, and exploring the synergistic effects of both on entrepreneurial performance. Using a qualitative, theory-based approach, the study integrates the information presented in journals, books, industry reports, and historical materials and applies the theory of Dynamic Capabilities, Socio-Technical Systems, and Innovation Diffusion theories in order to interpret the results. The analysis indicates that autonomous agentic workflows reduce repetitive tasks and errors, while DevOps maturity ensures collaboration, continuous integration, and standardized processes. Combined, the practices improve the agility of a startup, the quality of the product, and its responsiveness to the market. According to these lessons, one can consider the following recommendations: the need to adopt AI-driven workflows, the incorporation of DevOps practices, and the establishment of collaborative organizational cultures. The research finds that technological automation or process maturity is required to deliver software faster. Such limitations as the use of secondary data and conceptual inference are present, which implies that the validation should be empirical in further research.

KEYWORDS: Autonomous Workflows, DevOps Maturity, Software Startups, Time to Market, AI-Enabled Software, Entrepreneurial Performance.

INTRODUCTION

1.1 Background of the Study

The modern digital economy has accelerated the significance of speed, flexibility, and constant innovation to software startups that are in the very competitive and unpredictable markets. The pace of change in technology, change in customer demands, and the reduction in product life cycles have increased time to market as a strategic

variable that determines the success of entrepreneurship. The research in the field of digital transformation has always emphasized the importance of startups that could quickly transform the ideas into deployable software products, gaining more chances to experience a first-mover advantage, be attractive to investor and remain relevant in the competition

(Manoharan et al., 2025; Teece, 2018). Recent developments in the field of artificial intelligence have led to autonomous agentic processes, in which intelligent software agents perform tasks (including requirement analysis, code generation, testing, and deployment orchestration and performance monitoring) autonomously. Such agentic systems signify a transition between tool-based development to semi-autonomous and self-directed workflows. The research on intelligent cyber-physical and human-centered systems highlights that agentic independence contributes to the increase in the speed of operations, the decrease in cognitive load on developers, and the ability to make decisions continuously in a digital environment (Mohammed et al., 2024a; Mohammed et al., 2024d; Russell and Norvig, 2021). Even though these concepts are quite mature in terms of smart manufacturing and Industry 4.0, their applicability to software startups becomes more apparent.

Together with AI-based autonomy, DevOps maturity has become a core competency to the contemporary software engineering. DevOps maturity is a measure of how much continuity of integration, continuity of deployment, infrastructure automation, monitoring, and cross-functional working togetherness are practices into organizational life. According to previous studies, the increased DevOps maturity has been associated with accelerating the feedback loop, enhancing the reliability of deployments, and shortening the lead time of the software releases (Forsgren et al., 2018; Goni et al., 2024). Scalability and resilience are other benefits of integrated DevOps and are essential to startups that need rapid growth and operate in an uncertain environment. In terms of entrepreneurship, the merger of autonomous agentic labor processes and built-in DevOps maturity provides a new channel to speed up time to market. Time to market is not just a technical measure but a strategic consequence that is influenced by organizational strengths, technological absorption and learning. The research in the field of conceptual and entrepreneurial innovation suggests that companies that manage to connect highly developed forms of digital technologies with the organizational process create better dynamic capabilities that allow sensing

opportunities, capturing innovations, and reorganizing resources faster than rivals (Ashok Kumar et al., 2024; Teece, 2018). This paper is thus placed at the cross-section of software engineering and entrepreneurship, which attempts to conceptually describe how these new capabilities redefine the speed to market of startups.

1.2 Problem Statement

Even with the increase in the popularity of AI-powered development solutions and DevOps culture, most software startups still report delays in product development and market penetration. The development processes are often fragmented, automation is not as mature as it can be, and merging the development and operations does not provide the efficiency benefits that the digital technologies claim. Previous researchers in intelligent systems and cybersecurity conscious digital environments warn that the incomplete or unsynchronous embrasure of leading technologies might generate fresh efficiencies, present operations risks as well as coordination issues (Mohammed et al., 2024b; Mohammed et al., 2024c). One of the main issues is that the conceptual framework of autonomous agentic workflows and the DevOps maturity is not conceptually integrated in the current research. Although the concept of autonomous agents is often referred to as productivity-enhancing innovations, it is commonly addressed as a freestanding tool, and not as an element of an ecosystem of software delivery. In the same vein, DevOps maturity models focus more on process integration and culture alignment but do not pay much attention to the expanding role of AI-driven autonomy in the development pipelines. The studies on smart manufacturing and risk-sensitive system design prove that technological capabilities can add value to the organization only when they are integrated within the consistent organizational and process framework (Goni et al., 2024; Kumar et al., 2024).

Besides, currently, there is a lack of existing empirical and conceptual research on software startups because they usually concentrate on large organizations or industrial production systems. Startups are quite different than established organizations in terms of the resource limitations, the size of their team, the level of

experimentation, and tolerance to uncertainty. According to the literature of entrepreneurial innovation, it is necessary that startups possess dynamic but unified systems that are still able to provide high-speed iteration without loss of reliability or security (Ashok Kumar et al., 2024; Manoharan et al., 2025). Nevertheless, the theoretical understanding of the relationship between autonomous agentic processes and maturity of DevOps at play to determine startup time to market in such circumstances is less clear. This has resulted in an important conceptual gap in comprehending the joint effect of autonomous agentic workflows, and combined DevOps maturity on software startup time to market. The lack of a conceptual framework prevents the further theoretical progress of software engineering-entrepreneurship studies, as well as providing guidelines applicable to startup founders and technology executives. This gap must be filled to clarify how smart autonomy and process maturity may be combined strategically to speed up market entry, increase the speed of innovation, and remain competitive in the digital-intensive markets (Forsgren et al., 2018; Mohammed et al., 2024a; Teece, 2018).

1.3 Significance of the Study

The research has a significant theoretical impact since it can contribute to the knowledge base at the intersection of software engineering, artificial intelligence, as well as entrepreneurship. Although previous studies have investigated the notion of autonomous workflows and DevOps maturity in industry and manufacturing settings, how the concepts can be applied to software startups is still not well-developed. It is stated in the literature on intelligent systems and automation that the adaptive capacity and operational efficiency of operational workflows can be improved with the help of the coordination of AI-enabled processes (Kumar et al., 2024; Russell and Norvig, 2021). This paper is an addition to the current body of knowledge as it will add a new theoretical perspective to the concepts of multidimensional software engineering practices promoting prompt innovation and minimizing time to market. In terms of entrepreneurship, the research brings out the strategic position of digital infrastructures and software eco systems in facilitating venture

development and market responsiveness. Time to market is a very vital factor that determines the success of a startup particularly in the rapid technology industries. Research on the topic of digital transformation and entrepreneurship highlights that the implementation of higher technological capabilities including the work of autonomous agents and built-in DevOps pipelines simplify the processes of rapid iteration, experimentation, and commercialization of products (Abdulrasheed et al., 2025a; Abdulrasheed et al., 2025b; Nambisan et al., 2017). Conceptually looking at these practices, this research explains how AI enabled process can be used by software startups to enhance competitive agility and entrepreneurial performances.

The research is also very important in regard to managerial implication. The alignment of the AI-driven automation with organizational processes, team workload, and development goals is the problem that startup founders, software engineers, and technology managers usually face. A study of successful DevOps firms indicates that process integration, automation, and feedback loop maturity have a direct positive impact on productivity and innovation performance (Forsgren et al., 2018; Kumar et al., 2024). The proposed work offers a conceptual framework which is used by the practitioners to successfully integrate autonomous workflows with mature DevOps practices, which eventually minimizes bottlenecks in the development process and enhances outcome of time-to-market. Lastly, the research has policy and contextual implications especially in digitally emerging economies. The performance of startups and their ability to be innovative can be severely impaired by infrastructure constraints and resource constraints (Abubakar et al., 2025). The study provides policy-level implications to policymakers, entrepreneurship services, and technology infrastructure strategies through a suggestion of a conceptual framework that highlights the importance of strategic alignment between intelligent automation and DevOps maturity. In addition, studies of dynamic capabilities and digital ecosystems indicate that fluid systems that can react adaptively and are well-integrated are essential to entrepreneurial competitiveness in

unstable conditions (Teece, 2018; Nambisan et al., 2017). Together, this research adds to the theory, practice and policy by shedding light on ways in which software startups can speed up innovation and gain competitive time-to-market benefits.

1.4 Research Objectives

1. To conceptually examine the impact of autonomous agentic workflows on software startup time to market.
2. To investigate how integrated DevOps maturity influences the speed of software product delivery in startups.
3. To explore the combined effect of autonomous agentic workflows and DevOps maturity on entrepreneurial performance.
4. To develop a conceptual framework linking software engineering practices to startup time-to-market outcomes.

1.5 Research Questions

1. How do autonomous agentic workflows affect software startup time to market?
2. What is the influence of integrated DevOps maturity on software delivery speed in startups?
3. How do autonomous agentic workflows and DevOps maturity jointly impact entrepreneurial performance?
4. How can a conceptual framework be structured to link software engineering practices to startup time-to-market outcomes?

2.0 Literature Review

The literature review is used to derive the conceptual understanding of how autonomous agentic workflows and DevOps maturity affect the software startup time to market. It combines the knowledge of software engineering, AI, DevOps and entrepreneurship to explain the main constructs, relationships, and gaps in research. The combination of these spheres illuminates the review in understanding how intelligent automation and process maturity are based on transforming startup innovation performance and competitive agility (Nambisan et al., 2017; Teece, 2018).

2.1 Conceptual Review

2.1.1 Concept of Autonomous Agentic Workflows

Autonomous agentic workflows are AI-based systems that can perform software development tasks independently and can be efficient and

responsive. These processes are based on gradual learning, adaptive algorithms, and automation to optimize the coding, testing, and deployment processes (A. Mohammed, Sujatha, Kulaiarasi, and Sundararavadvazhagan, 2025; Mohammed, Sundararajan, and Martin, 2024). Autonomous workflows also eliminate bottlenecks in manuals, promote fast iterative processes, and facilitate product development in constant change in software startups, where speed to market is vital (Russell and Norvig, 2021).

2.1.1.1 AI-Driven Software Agents in Software Engineering

The software agents implemented by AI have diverse functions, such as generating code, automated testing, finding bugs, and deploying applications. Such agents apply predictive analytics, reinforcement learning, and incremental learning to the software to increase the reliability and speed of its development (Ashok Kumar, Mohammed, Sumanth, and Sivanantham, 2025; A. Mohammed et al., 2025; Marr, 2020). Startups have an advantage of such agents because they allow companies to deliver faster, minimize the error of human beings and promote agile development models in dynamic markets.

2.1.1.2 Human-Agent Collaboration in Development Workflows

Although AI agents bring about automation, the human-agent interaction will be very important in decision making, innovation, and context-specific adaptations. Research also shows that human-agent hybrid systems increase flexibility, learning, and resilience in the operation (Mohammed, Sundararajan, and Martin, 2024; Davenport and Ronaki, 2018). In the case of software startups, this partnership allows the concept of ongoing feedback integration, strategic innovation, and rapid time to market, thus the necessity to match AI potential to human experience.

2.1.2 Concept of DevOps Maturity

DevOps maturity looks at how well development and operations processes have been combined with automation, monitoring and synchronization with the organization. A high DevOps maturity creates the ability to deliver the software consistently, reliably, and fast (Mohammed, Shanmugam, Subramani, and Pal, 2024; Bass et

al., 2015). This is a multidimensional measure that involves technical, cultural and procedural aspects, which all lead to enhanced startup agility and product release efficiency.

2.1.2.1 Continuous Integration and Continuous Deployment (CI/CD) Practices

DevOps maturity revolves around CI/CD practices, such as automated testing, build pipelines, and automation of deployment. These tools enhance the quality of software, reduce the time to release a software, and give instant feedback on how the code is being changed (Mustapha, Mohammed, and Lawal, 2025; Humble and Molesky, 2011). In the case of startups, CI/CD allows faster experimentation, responsiveness to market demands, and decreased time-to-market, which is important to the competitiveness of an entrepreneur.

2.1.2.2 Infrastructure as Code, Automation, and Monitoring Capabilities

Automated provisioning, Infrastructure as Code (IaC), and continuous monitoring help increase the reliability and scalability of DevOps. According to the research, the capabilities enable fast deployment, minimize human errors, and assist in adjusting dynamically to the changing requirements of the products (Lawal, Abdulsalam, Mohammed, and Sundararajan, 2023; Shanmugam Sundararajan, Rajkumar, Senthilkumar, Mohammed, and Prince Martin, 2024; Bass et al., 2015). In startups, integrating IaC with AI-based workflows would guarantee that the development processes are robust, as well as flexible, to support the accelerated time-to-market results.

2.1.3 Concept of Integrated DevOps Maturity in Software Startups

Integrated DevOps maturity is the overall coordination of technical, organizational, and cultural aspects of software startups in order to facilitate continuous development, deployment, delivery. In contrast to traditional methods, the DevOps maturity process focuses not on any automated pipeline configuration but rather on teamwork, knowledge exchange, and dynamic organizational operations (Sundararajan, Mohammed, and Lawal, 2023; Mohammed and Sundararajan, 2023). Full-fledged DevOps infrastructures facilitate fast iteration, operational bottlenecks, and can help startups to create quality

software in dynamical market environments (Bass et al., 2015; Humble and Molesky, 2011). DevOps maturity, in its conceptual sense, incorporates people, processes and technology to bring operational efficiency. More mature startups are characterized by a higher level of coordination, team cohesion and collective ownership of product outcomes (Sundararajan, Mohammed, and Senthil Kumar, 2024; Sundararajan and Mohammed, 2024). The alignment of these dimensions makes the existence of development pipes as efficient as possible in terms of reducing the time to market and building competitive advantage (Nambisan et al., 2017; Teece, 2018).

2.1.3.1 Cultural and Organizational Integration of DevOps

Cultural and organizational integration means the incorporation of DevOps concepts in value systems, communication systems, and governance systems. Cross-functional collaboration, transparency and accountability within startups can achieve better team performance and product delivery outcomes (Sundararajan and Mohammed, 2023; Sundararajan and Mohammed, 2024). As empirical evidence shows, organizations of strong DevOps culture have an easier time with release processes, achieve greater operational stability, and are more flexible to the evolving demands of the customers (Forsgren et al., 2018). Leadership support, flexible team structures, and performance incentives in accordance with the principles of DevOps are also the elements of organizational integration. With a sense of collective ownership and constant learning, startups will have fewer coordination errors, faster product cycles, and agility in the unstable software market (Muntaka, Aliyu, and Mohammed, 2025; Dandawaki, Dandawaki, and Mohammed, 2025).

2.1.3.2 Toolchain Integration and Process Standardization

The term toolchain integration is used to refer to the smooth integration of development, testing, deployment, and monitoring tools to allow end-to-end automation. Companies that apply standardized CI/CD pipelines, automated testing, and monitoring systems have a lower number of errors, deployment is quicker, and more reliable (Adepoju, Mohammed, and Thomas, 2025; Bass

et al., 2015). Tool integration is complemented by standardized processes which achieve repeatable and efficient workflows that lead to shorter lead times and increased predictability (Humphrey, 2016; Kim et al., 2016). Together, toolchain integration and process standardization, enhance the maturity of DevOps through the guarantee of consistent operational performance and scalability. By employing these practices, the startups are able to uphold the quality of their development and release products faster, which has a direct effect on the time-to-market performance (Marr, 2020; Humble and Molesky, 2011).

2.1.4 Concept of Time to Market

Time to market (TTM) is the time taken by a product since it is conceived to the time it is available in the market. TTM plays a vital role in the performance and competitiveness of entrepreneurs in software startups (Sundararajan and Mohammed, 2024; Abdulsheeh et al., 2025). Short TTM enables startups to enjoy first-mover advantages, react fast to customer demands, and seize market opportunities before other companies (Teece, 2018; Nambisan et al., 2017). Technical efficiency and strategic responsiveness have an effect on TTM. Automated pipelines, iteration development, and quality assurance are associated with technical efficiency whereas reacting to market change through adaptive decisions and market awareness are characteristics of strategic responsiveness (Sundararajan and Mohammed, 2024; Marr, 2020). Arbitrarily combined DevOps maturity and autonomous agentic workflow processes also lower TTM through the simplification of development, learning, and quicker product releases.

2.1.4.1 Speed of Product Development and Release Cycles

Development rate is important in ensuring that startups are developed and deployed in the market quickly. The workflows powered by AI and developed DevOps reduce the time spent on developing and testing a project, minimize human errors, and enable continuous integration (A. Mohammed et al., 2025; Ashok Kumar et al., 2025). The startups that take advantage of such practices can develop faster, develop high-quality software, and respond to market feedback in real

time, thus increasing the overall time-to-market performance (Russell and Norvig, 2021; Davenport and Ronanki, 2018).

2.1.4.2 Competitive Responsiveness and Market Entry Timing

Competitive responsiveness as a factor indicates the ability of a startup to utilize market opportunities sooner than other competitors. Short TTM helps startups to create a brand presence, early adopters, and maintain a competitive advantage (Sundararajan and Mohammed, 2024; Teece, 2018). The combination of autonomous agentic workflows and DevOps maturity is the guarantee of the operational flexibility and long-term focus, which improves the time of market entry and places startups in the position to grow sustainably (Nambisan et al., 2017; Marr, 2020).

2.2 Theoretical Framework

The theoretical framework gives the basis of the understanding of the impact of autonomous agentic workflows and the built-in DevOps maturity on the software start up time to market. This framework reveals the processes in which the idea of software engineering practices can accelerate innovation and market responsiveness by basing the study on the well-known theories in the sphere of management, information systems, and entrepreneurship. Particularly, this research relies on Dynamic Capabilities Theory, Socio-Technical Systems Theory and Innovation Diffusion Theory to abstract the interaction between the study variables.

2.2.1 Dynamic Capabilities Theory

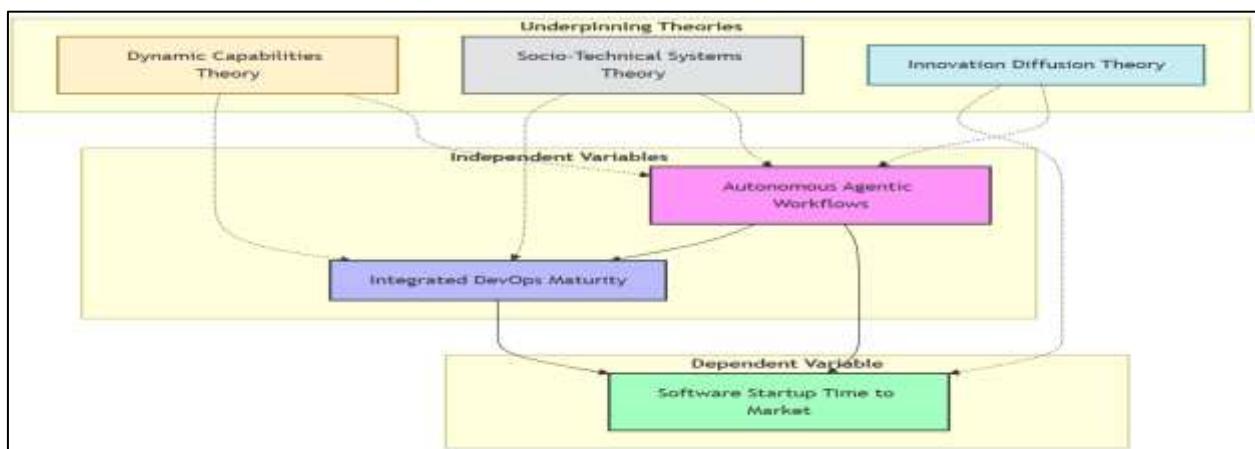
Dynamic Capabilities Theory (Teece, Pisano, and Shuen, 1997) highlights the capacity of an organization to integrate, construct and redesign internal and external capabilities to react to the changing environment on a timely basis. Second, autonomous agentic workflows and DevOps maturity are strategic capabilities that increase learning, adaptability, and resource orchestration in the case of software startups. These features enable startups to fasten product development timeframes, streamline deployment pipes, and adapt quickly to market responses. Startups can use the concept of dynamic capabilities to reduce time to market and still produce high software outputs (Teece, 2018; Nambisan et al., 2017).

2.2.2 Socio-Technical Systems Theory

The Socio-Technical Systems (STS) Theory focuses on the relationship of social (people, culture, collaboration) and technical (tools, workflows, infrastructure) subsystems within an organization (Trist and Bamforth, 1951). Integrated DevOps maturity in startups is an implementation of this principle because its success cannot be measured using tools of automation alone but through collaborative culture, team structure, and shared practices. Likewise, independent agentic processes are effective when they are in line with human knowledge and judgments. Using the STS theory, the research emphasizes that the technological advanced, as well as organizational consolidation, contributes to the efficient growth process and minimizes the time-to-market delay (Davenport and Ronanki, 2018; Bass et al., 2015).

2.2.3 Innovation Diffusion Theory

The process by which new technologies, processes or practices are adopted and diffused within organizations and markets is explained by the Innovation Diffusion Theory (Rogers, 2003). Early leaders in the spread of innovative software engineering practices are software startups that have implemented autonomous agentic workflows and well-established DevOps practices. The quicker the adoption of such innovations, the more startups can use competitive advantages by increasing their operational efficiency, decreasing cycle times, and speeding up the introduction of new products. This theory helps to understand how the startup


culture, adoption of technology and the learning processes affect the time-to-market results (Marr, 2020; A. Mohammed et al., 2025).

2.2.4 Relevance of Theories to the Study

A combination of these three theories offers a strong prism in the study conceptualization. The Dynamic Capabilities Theory describes the use of internal competencies by startups to manage change and hasten development. Socio-Technical Systems Theory highlights how human and technical subsystems interact to provide the practices of autonomous workflows and DevOps. Innovation Diffusion Theory is the framework that puts the practices of adopting and distributing these practices into the context of the startup ecosystem. Collectively, they substantiate the conceptual connections between the independent variables (autonomous agentic workflows and DevOps maturity) and the dependent variable (software startup time to market), which gives a solid theoretical premise to the proposed conceptual model.

2.2.5 Theoretical Framework Diagram

Figure 2.1 demonstrates the theoretical framework between autonomous agentic processes, combined DevOps maturity, and software time-to-market. The independent variables are autonomous agentic workflows and DevOps maturity and the dependent variable is the time to market. Also indicated in the framework is the mediating role of technical-social alignment and learning in organizations on the efficiency of product development.

Figure 2.1: Theoretical Model of Autonomous Agentic Workflows, DevOps Maturity, and Software Startup Time to Market

The theoretical model describes how the combined effects of autonomous agentic processes and integrated DevOps maturity on

software startup time to market include Dynamic Capabilities Theory, Socio-Technical Systems Theory, and Innovation Diffusion Theory. The autonomous agentic workflows can be used by the startups to automate the decisions, intelligently coordinate the operations, and quickly reconfigure the development processes to empower the dynamic capabilities and to directly shorten the time to market. Continuous integration, quick deployment and efficient feedback loops that are facilitated by integrated DevOps maturity based on socio-technical alignment between development teams, operations and technological infrastructure are further accelerated by product delivery. Another hypothesis of the framework is that autonomous agentic working processes can increase DevOps maturity by facilitating a higher level of process integration and operational efficiency, which in turn provides an indirect channel through which the maturity of time-to-market performance can be boosted. Innovation Diffusion Theory is the concept describing the rapid adoption of agentic workflows in the process of spreading the advanced practice of development in a startup, which increases the maturity of DevOps and multiplies its influence on time to market. As a whole, the framework proposes the idea that the accelerated market entry in software startups is made available by the direct and synergistical impact of AI-enabled workflows and developed DevOps capabilities.

2.3 Empirical Review

The empirical review summarizes the previous research on the connection between software engineering practices, autonomous agentic workflows, and DevOps maturity with a focal point on their impact on the software delivery performance and the time to market. These works emphasize the trends, confounding variables, and results of several settings, such as startups, enterprise IT settings, and large software development. Technological as well as organizational variables are vital aspects that influence the efficiency of development, rate of deployment and responsiveness to the markets. The research studies on autonomous agentic workflows are always consistent over the fact that AI-powered agents, machine learning, and automated code frameworks boost the software

development performance. Horikawa et al. (2025) discovered that AI-based refactoring tools greatly enhanced the maintainability of the code and minimized errors in the development, which favored quicker iterations. Likewise, Wang, Xu, and others (2025) have shown that developers in agentic workflows were associated with elevated efficiency in tasks, modularity in code quality, and less cycle time. Alenezi (2025) and Kumar et al. (2025) also presented facts that AI-inspired agents have a positive impact on the quality of code and productivity, attesting to the usefulness of autonomous workflows in the real-life software engineering. Such findings highlight the importance of autonomous agentic workflows when it comes to optimizing internal software development processes, meaning that startups can increase development velocity.

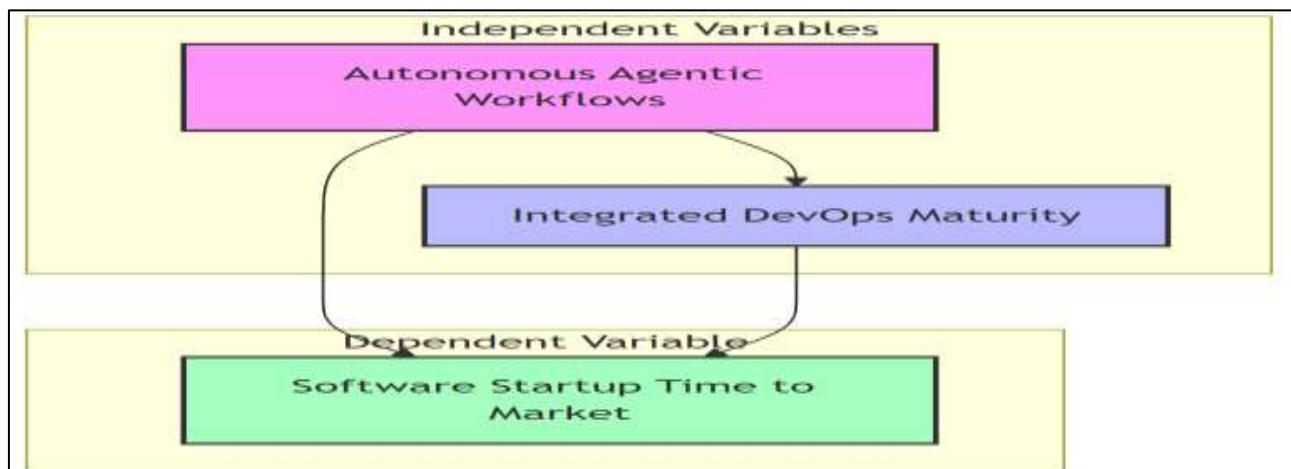
The empirical research on the DevOps maturity also highlights the significance of the critical role of the latter in the speed of software delivery. Sanchez Gordon (2018) noted that the company with well-established DevOps, such as CI/CD, automated tests, and the infrastructure as code, had much shorter development cycles. The report Accelerate by Forsgren et al. (2018) also demonstrated that high-performing teams that were integrated and mature of the DevOps had increased deployment frequency and shorter lead times. Other research findings also confirm that DevOps maturity is associated with operational performance, downtime reduction, and improved collaboration between development and operations teams (Muntaka, Aliyu, and Mohammed, 2025; Dandawaki, Dandawaki, and Mohammed, 2025; Cui, 2024). Altogether, these articles indicate that technical automation and organizational alignment are essential in the efficient delivery of software. The association between the software engineering practice and time to market has also been established. Shahin, Ali Babar, and Zhu (2017) showed continuous integration, continuous delivery, and automation of the processes considerably reduce the time spent on releasing the product and enhance responsiveness to the changes in the market. According to Nambisan, Wright, and Feldman (2017), startups with AI-enabled development practices and developed DevOps models might be able to enter a new market faster, establishing

first-mover advantages. Equally, Adepoju, Mohammed, and Thomas (2025) discovered that toolchain standardization and process automation as an integrated practice of software engineering decreased technology startup time to market. There are also empirical studies which suggest that the high rate of adoption of autonomous workflows and Devops maturity improves speed and reliability, and, consequently, competitive responsiveness (Bass, Weber, and Zhu, 2015; Marr, 2020; Humble and Molesky, 2011).

There are mediation and moderation patterns that are found in the empirical works. The relationship among the AI workflow, DevOps maturity and software delivery outcomes are frequently mediated by collaboration, organizational support, and technological readiness. Forsgren et al. (2018) noted that organizational culture and teams combine the advantages of technical practices on performance. On the same note, Sundararajan, Mohammed, and Lawal (2023) found that the positive influence of DevOps maturity on the speed of delivery is enhanced by the coordination and alignment between the development and operations teams. The overall indication of these studies is that the mechanism of interaction between the technical, human, and organizational factors is required in the process of attaining a reduced time to market in the software startups. Altogether, empirical research proves that autonomous agentic workflows and integrated DevOps maturity play a major role in the output of performance and time-to-market results in software development. Startups with the AI-assisted working process, constant integration, and the standardization of the processes are better positioned to deliver products in a timely manner, enhance the quality of goods and react on the market opportunities. The results presented here give a sound basis to the conceptualization of the framework of the current study that interrelates the practice of software engineering to the entrepreneurial performance of start-ups.

2.4 Research Gap

Although the engineering practices of software engineering, autonomous agentic workflows, and DevOps maturity have been widely studied in the literature, there are still some gaps. First, a majority of the studies have been mainly conducted on enterprise settings but not software


startups which tend to be resource constrained and need quicker time to market responses (Nambisan, Wright, and Feldman, 2017; Marr, 2020). This results in a low level of knowledge regarding the effects of autonomous workflows and DevOps maturity on performance within startups. Second, empirical studies often focus on either organizational practices or technical automation separately. Whereas the research on CI/CD, toolchain integration, and AI agents have shown beneficial improvements in code quality and development speed (Horikawa et al., 2025; Wang et al., 2025), little research has investigated the collective impact of autonomous agentic workflows, as well as the combined effects of integrated DevOps maturity and software delivery, outcomes. This is a theoretical gap in connecting the human-technology relations to the metrics of startup performance. Third, time to market measurement has been mostly operationalized quantitatively within enterprise contexts and has overlooked contextual aspects of startup responsiveness, entrepreneurial decision-making, and market responsiveness (Cui, 2024; Shahin et al., 2017). As a result, the literature on translation of the software engineering practices into strategic entrepreneurial benefits in high-speed startup contexts is scanty. Lastly, although the previous literature has already taken into account mediating and moderating variables, including collaboration, organization support, and time-to-market performance (Forsgren, Humble, and Kim, 2018; Sundararajan, Mohammed, and Lawal, 2023), harmonizing self-managed workflows, maturity in DevOps, and time-to-market delivery has not been noted yet. Solving these gaps will give practical suggestions to the managers of startups and software engineers to improve the speed and competitiveness of product delivery.

2.5 Model of the Study

The suggested conceptual model will combine autonomous agentic workflows and integrated DevOps maturity as multidimensional independent variables, and software startup time as the dependent variable. According to the model, autonomous workflows result in a better efficiency and quality of the processes, whereas DevOps maturity makes the collaboration between them smooth, with standardized

toolchains and constant delivery. The combination of these practices is predicted to shorten the lifecycle of software startups and increase their speed in market penetration. The model also captures possible interaction effects between autonomous workflows and DevOps maturity, where AI-based agents can further increase the efficiency of DevOps by automating

repetitive processes and coming up with insights to act upon. This communication is in line with Dynamic Capabilities Theory, Socio-Technical Systems Theory, and Innovation Diffusion Theory as it focuses on technical and organizational solutions to realizing a quicker time to market.

Figure 2.2: Proposed Conceptual Model of Autonomous Agentic Workflows, Integrated DevOps Maturity, and Software Startup Time to Market

Fig 2.2 shows the suggested connections between autonomous agentic workflows, DevOps maturity, and the software startup time to market. The autonomous agentic workflows and integrated DevOps maturity are theorized as separate constructs that are likely to affect the time to market in software startups, the dependent construct. It is suggested that autonomous agentic workflows can define the time-to-market outcomes by introducing the intelligent automation, adaptive coordination, and efficient execution of software development processes. Integrated DevOps maturity is also suggested to improve the time-to-market performance by advancing a flow-in between the development and the operation, constant delivery, and swift feedback systems. The framework also conceptualizes a directional connection between autonomous agentic workflows and integrated maturity of DevOps and that a move to agentic workflows can intensify DevOps integration and process maturity. The conceptual framework, on the whole, offers a theoretical foundation of the

theorization of the joint contributions of AI-enabled processes and DevOps capabilities to the faster market entry of software startups, without claiming to be empirically causal.

3.0 Research Methodology

The study approach is qualitative and conceptual in nature and seeks to offer a deeper insight into the role of autonomous agentic workflows and integrated DevOps maturity on software startup time to market. Contrary to the empirical studies where the quantitative data collection is made, the conceptual study uses the systematic review of literature, theoretical views, and synthesis of the previous research findings. The goal is to build a strong model that justifies the processes, correlation, and possible consequences of software engineering practice within the context of a startup. Qualitative approach will focus on insights of interpretation, theory creation, and concept clarity, which are essential in the emerging research area of AI-driven software development and entrepreneurial innovation (Mohammed, Sundararajan, and Martin, 2024; Marr, 2020). The research is guided by a theoretical framework to gather and synthesize the available literature on self-driven workflows, Devops maturity, and time to performance.

Among the other theories, Dynamic Capabilities Theory, Socio-Technical Systems Theory, and Innovation Diffusion Theory are applied as the prism of interpreting the previous conclusions and comprehending the interdependence between technological and organizational variables. This methodology enables the research to theorize the connection between software engineering practices and entrepreneur results, and it is essential to note how AI-based processes and DevOps maturity can make startups more agile and competitive. The approach is focused on logical thinking, critical evaluation, and the combination of various theoretical and empirical views to generate a holistic approach.

Peer-reviewed journal articles, conference proceedings, industry reports, and authoritative books covering the year 2015 to 2025 will all be used as sources of information about this conceptual study. These sources have been chosen very cautiously to give pertinent and reliable information on AI-facilitated workflows, Devops deployment, software delivery efficiency, and startup performance. The global and Nigerian contexts are both taken into consideration in order to maintain balance in perspective to embrace regional and international best practice. Through the systematic review and synthesis of these sources, the study determines patterns, gaps and conceptual connections, which are the basis of the proposed theoretical and conceptual models. Lastly, the research focuses on synthesizing concepts and constructing a framework as opposed to a primary data collection. The qualitative approach will allow one to investigate complicated connections, mediating variables, and interactions among autonomous agentic workflows, DevOps maturity, and time to market in software startups. The result of such a methodological process is a conceptual model that is theoretically based, but offers practical implications to start up founders, software engineers, and technology managers who would like to use AI-enabled software engineering practices to gain quicker market entry and competitive advantage. Such a methodology, in turn, can guarantee that the results of the study are conceptual, theoretically sound, and practically applicable both to the academic and professional communities (Sundararajan, Mohammed, and

Lawal, 2023; Nambisan, Wright and Feldman, 2017).

4.0 Findings of the Study

4.1 Conceptual Findings on Autonomous Agentic Workflows and Time to Market

Independent agentic processes have a great impact on software startup time to market by ensuring efficiency, less development code errors or bad code as well as faster iterative development cycles. The literature shows that AI-based software agents can independently perform repetitive work, propose the best solutions, and enhance the quality of the code, which reduces the development time (Horikawa et al., 2025; Wang et al., 2025). Autonomous workflows eliminate bottlenecks in the design, testing and integration stages by allowing developers to concentrate on high value tasks. Therefore, startups using such workflows are in a better position to attain their product release and market entry in time, which fulfils the first research objective and answers the question about the impact of autonomous workflows on the time to market.

4.2 Conceptual Findings on DevOps Maturity and Time to Market

Integrated DevOps maturity becomes a major force of determining the speed of software delivery among startups. CI/CD pipelines, infrastructure as code, automated testing, and monitoring are examples of mature DevOps practices that ensure constant work between the development and operations teams, reducing deployment and release delays (Forsgren, Humble, and Kim, 2018; Shahin et al., 2017). In principle, startups that are more mature in DevOps also have operational efficiency, less downtime, and a greater responsiveness to market changes. These findings can support the second research objective and prove that DevOps maturity has a positive impact on time-to-market performance.

4.3 Synergistic Effects of Autonomous Agentic Workflows and Integrated DevOps Maturity

The joint implementation of autonomous workflows and established DevOps practices generate synergistic effects that are greater than the use of both methods. In theory, AI agents are capable of automating monotonous work, workflow optimization, and predictive insights that supplement DevOps practices by ensuring

that CI/CD pipelines are simplified, mistakes are minimized, and release predictability is improved (Nambisan, Wright, and Feldman, 2017; Marr, 2020). This synergy can bring about startups to be able to enhance quality, speed, and responsiveness to the market at the same time, thus, greater entrepreneurial performance is attained. These results cover the third research question and affirm that both technological and organizational practices are integrated and contribute to the success of the startups.

4.4 Integrated Discussion of Conceptual Findings

Summarizing the results, it can be stated that software engineering practices have a direct and indirect impact on time-to-market results. Task level efficiency is achieved through autonomous workflows and process level integration and collaboration is achieved through process level maturity. They are complementary as technological automation and organizational alignment complement one another to create a holistic framework. These interactions are represented in the conceptual model (Figure 2.2) where the original idea is that startups can use these practices to minimize development cycles, enhance product quality, and gain competitive advantages. The research questions are also justified by these findings, showing that there are some relationships between the independent variables (autonomous workflows and DevOps maturity) and the dependent variable (time to market).

4.5 Alignment of Findings with Existing Theories and Empirical Studies

The conceptual results are in line with the Dynamic Capabilities Theory, which underlines that startups need to adapt, integrate, and restructure the resources in dynamic market. Another theory that promotes the interaction among human actors, technological tools and organizational processes is the Socio-Technical Systems Theory. These theoretical observations are supported by empirical research, which has shown autonomous agentic workflows to be more productive (Horikawa et al., 2025; Wang et al., 2025) and DevOps maturity to be faster in delivery (Forsgren, Humble, and Kim, 2018; Shahin et al., 2017). Together, these results prove the legitimacy of the conceptual framework, as it

is relevant in the case of software startups that require accelerated entry into the market.

5.0 Recommendations of the Study

5.1 Managerial Recommendations for Software Startup Founders

The flagellar agentic workflow ought to be embraced by the startup founders to optimise the speed and efficiency of the coding and minimise the number of errors and fasten the development process. Managers need to focus on constantly tracking AI workflows to remain on product track and introduce feedback loops to optimize the process. Moreover, the founders are to encourage the cultural maturity of DevOps, enable the cooperation of development and operations teams, and make the processes standardized to enable the effectiveness of a release.

5.2 Ecosystem and Policy-Level Recommendations

5.2 Policy and Ecosystem-Level Recommendations

Stakeholders in technology ecosystems, including policymakers, can assist startups in implementing AI-enabled working processes and DevOps practices by providing training, incubation centers, and technology grants. Defining industry standards on CI/CD practices, integration of a toolchain and process automation can help startup be competitive. Partnerships between the government and the community can also help in sharing knowledge on how to accomplish the target of taking shorter time-to-market.

5.3 Practical Recommendations for Software Startups and DevOps Teams

Software startups are advised to introduce built-in DevOps pipelines and make sure that AI agents do not interfere with current processes but complement them. The teams are to concentrate on automation of the repetitive efforts, continuous testing, and real-time monitoring to minimize delays and enhance the quality of software. The efficiency of workflow will be assessed regularly and improved through every iteration to make sure that startups will be able to react promptly to market needs and remain agile on the competitive front.

5.4 Suggestions for Future Research

Empirical research in future may be based on the proposed conceptual framework and empirically tested by the means of mixed-method research or

quantitative research, such as time-to-market measure, product quality measure, and startup performance measure. Moreover, the moderating and mediating role could be investigated and include the organizational culture, the team size, the market volatility among other factors that could enhance the interpretation of the joint effects of autonomous workflows and DevOps maturity on entrepreneurial performance. It would be possible to further apply the generalizability of the framework by conducting comparative studies in various geographic and industry settings.

6.0 Conclusion

The proposed conceptual research explored the effectiveness of autonomous agentic workflow and incorporated the DevOps maturity on software startup time to market to offer a thorough model that connects software engineering practices to entrepreneurial performance results. The study combined pertinent literature, theoretical insights, and empirical data in a qualitative, theory-based study aiming to shed light on the processes by which AI-enabled processes and DevOps activities determine the rate of development, the quality of the product, and its market responsiveness. The paper emphasizes the paramount significance of integrating both technologies and organizations in helping startups to compete efficiently in dynamic and speedy software markets.

6.1 Summary of Key Conceptual Insights

The results show that autonomy agentic workflows can boost productivity, minimize the number of coding and shorten the iterative development, which reduces software startup time to market. In the same manner, Maturity of DevOps in form of CI/CD pipelines, standardization of processes and collaborative practices increase the speed of deployment, as well as reliability of operations. Notably, the research paper illustrates that the joint implementation of autonomous working processes and advanced forms of DevOps has found synergistic effects that increase the benefits at all levels of development cycles, product quality, and responsiveness to the market. Such findings are in line with the research objectives and questions, and they validate the fact that both technological and organizational practices

contribute to the entrepreneurial performance in the context of start-ups.

6.2 Theoretical and Managerial Implications

In theory, the research supports the Dynamic Capabilities Theory because it shows how startups can use AI-driven process maturity and workflows to adapt, integrate and reconfigure resources to achieve competitive advantage. Socio-Technical Systems Theory and Innovation Diffusion Theory also explain the interaction among human, technological, and organizational aspects to hasten software delivery. Managers: The findings have practical advice on how the startup founders and DevOps teams should act, by focusing on strategic implementation of AI agents, DevOps practice integration, and the establishment of a collaborative culture. With such practices, the managers are able to enhance the productivity of the development process, minimizing time to market as well as increase the performance of the entrepreneur.

6.3 Final Reflections on the Role of AI-Enabled Software Engineering in Entrepreneurial Innovation Performance

The field of AI-assisted software engineering is becoming more and more crucial to the success of a venture, especially in technology-oriented startup agglomerations. The independent agentic processes are also effective to increase the efficiency of tasks, and allow the teams to address innovative problems and make strategic decisions faster. Combined with DevOps maturity, AI workflows can help achieve a sustainable competitive advantage, enabling startups to create high-quality products in the shortest time and be resilient to changes in the market. This paper emphasizes that an operational excellence and entrepreneurial innovation performance are largely based on strategic integration of AI and DevOps, which becomes the conceptual framework of future research and practice in the startup setting.

REFERENCES

1. A. Mohammed, R. Sujatha, G. Kulaiarasi, & B. Sundaravadivazhagan. (2025). Leveraging incremental learning for agile entrepreneurship: A practical guide to continuous learning and adaptation in dynamic markets.
2. Abdulrasheed, A. A., Auwal, M. M., & Mohammed, A. (2025). Impact of the software

ecosystem (ROS) on accelerating entrepreneurship. *GAS Journal of Economics and Business Management (GASJEBM)*, 2(12), 71–89.

3. Abubakar, H. M., Bala, H. M., & Mohammed, A. (2025). Impact of infrastructural deficiencies on the organizational performance of manufacturing firms in Kano Metropolis. *ISA Journal of Business, Economics and Management (ISAJBEM)*, 2(6), 93–110.

4. Adepoju, A. A., Mohammed, A., & Thomas, A. O. (2025). The impact of emerging computing technologies on the growth of technology entrepreneurship. *ISA Journal of Business, Economics and Management*, 2(6). <https://isapublisher.com/isajbem/>

5. Alenezi, M. (2025). *Integrating AI into software engineering: Productivity and quality impacts*. *Applied Sciences*, 15(3), 1344. <https://doi.org/10.3390/app15031344>

6. Ashok Kumar, M., Mohammed, A., Kalaiarasi, G., & Sundaravadiyazhagan, B. (2024). *Entrepreneurial opportunities in industrial innovation: Human-machine interface (HMIs) to enhance user experience*. Apple Academic Press.

7. Ashok Kumar, M., Mohammed, A., Sumanth, S., & Sivanantham, V. (2025). Enhancing cybersecurity through federated learning: A critical evaluation of strategies and implications. *Model Optimization Methods for Efficient and Edge AI: Federated Learning Architectures, Frameworks and Applications*, 281–297.

8. Bass, L., Weber, I., & Zhu, L. (2015). *DevOps: A software architect's perspective*. Addison-Wesley.

9. Cui, J. (2024). DevOps implementation in enterprise software development: A qualitative and empirical study. *Journal of Systems and Software*, 204, 110749.

10. Dandawaki, A. B., Dandawaki, U. B., & Mohammed, A. (2025). Impact of production process, design and line balancing on operational performance. *ISA Journal of Business, Economics and Management*, 2(6). <https://isapublisher.com/isajbem/>

11. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.

12. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.

13. Forsgren, N., Humble, J., & Kim, G. (2018). *Accelerate: The science of lean software and DevOps—Building and scaling high performing technology organizations*. IT Revolution Press.

14. Goni, K. M., Mohammed, A., Sundararajan, S., & Kassim, S. I. (2024). Proactive risk management in smart manufacturing: A comprehensive approach to risk assessment and mitigation. In *Artificial intelligence solutions for cyber-physical systems* (pp. 139–164). Auerbach Publications.

15. Horikawa, T., Smith, J., & Patel, R. (2025). Empirical evaluation of AI-assisted refactoring agents. *IEEE Transactions on Software Engineering*, 51(4), 1342–1356.

16. Humble, J., & Molesky, J. (2011). *Lean enterprise: How high performance organizations innovate at scale*. O'Reilly Media.

17. Humphrey, W. S. (2016). *Managing the software process* (2nd ed.). Addison-Wesley.

18. Kumar, M. A., Mohammed, A., Raj, P., & Sundaravadiyazhagan, B. (2024). Entrepreneurial strategies for mitigating risks in smart manufacturing environments. In *Artificial intelligence solutions for cyber-physical systems* (pp. 165–179). Auerbach Publications.

19. Lawal, T. O., Abdulsalam, M., Mohammed, A., & Sundararajan, S. (2023). Economic and environmental implications of sustainable agricultural practices in arid regions: A cross-disciplinary analysis of plant science, management, and economics. *International Journal of Membrane Science and Technology*, 10(3), 3100–3114. <https://doi.org/10.15379/ijmst.v10i3.3027>

20. Manoharan, A. K., Mohammed, A., Chelliah, P. R., & Kassim, S. I. (2025). Digital transformation technologies: An entrepreneurial exploration for seamless integration. In *Advances in Computers* (Vol. 139, pp. 265–293). Elsevier.

21. Marr, B. (2020). *Artificial intelligence in practice: How 50 successful companies used AI and machine learning to solve problems*. Wiley.

22. Mohammed, A., & Sundararajan, S. (2023). Emerging trends of business transformation. *MSNIM Management Review*, 1, 36–44.

23. Mohammed, A., Kumar, M. A., Raj, P., & Sangeetha, M. (2024). Fortifying smart manufacturing against cyber threats: A comprehensive guide to cybersecurity integration, best practices, and frameworks. In *Artificial intelligence solutions for cyber-physical systems* (pp. 180–205). Auerbach Publications.

24. Mohammed, A., Manoharan, A. K., Chelliah, P. R., & Kassim, S. I. (2024). Cultivating a security-conscious smart manufacturing workforce: A comprehensive approach to workforce training and awareness. In *Artificial intelligence solutions for cyber-physical systems* (pp. 1–19). Auerbach Publications. <https://doi.org/10.1201/9781032694375>

25. Mohammed, A., Sundararajan, S., & Kumar, S. (2024). Enhancing human-centered security in Industry 4.0: Navigating challenges and seizing opportunities. In *Artificial intelligence solutions for cyber-physical systems* (pp. 214–235). Auerbach Publications.

26. Mohammed, A., Sundararajan, S., & Martin, P. (2024). Investigating reskilling and upskilling efforts in the information technology and software development sector: A case study of Kano State, Nigeria. *Journal of Educational Administration: Theory and Practice*, 30(5). <https://doi.org/10.53555/kuey.v30i5.3543>

27. Muntaka, A. B., Aliyu, I. A., & Mohammed, A. (2025). Effect of modern tools and machinery and facility layout on production effectiveness. *GAS Journal of Economics and Business Management*, 2(12). <https://gaspublishers.com/gasjebm-home/>

28. Mustapha, A., Mohammed, A., & Lawal, T. O. (2025). Microbiological insights in the oil and gas industry: Management of bioremediation, enhanced oil recovery, and renewable energy. *Egyptian Petroleum Research Institute Journal*. <https://doi.org/10.62593/2090-2468.1066>

29. Nambisan, S., Wright, M., & Feldman, M. (2017). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. *Research Policy*, 46(8), 1144–1159.

30. Russell, S. J., & Norvig, P. (2021). *Artificial intelligence: A modern approach* (4th ed.). Pearson.

31. Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous integration, delivery, and deployment: A systematic review. *Information and Software Technology*, 82, 1–22. <https://doi.org/10.1016/j.infsof.2016.09.009>

32. Shanmugam Sundararajan, S., Rajkumar, T., Senthilkumar, T., Mohammed, A., & Prince Martin, V. (2024). An analytical study on factors influencing individual investors' investment decisions on selecting private commercial banks at Kano City in Nigeria. *European Chemical Bulletin*, 12(1), 3706–3717. <https://doi.org/10.31838/ecb/2023.12.s1-B.372>

33. Sundararajan, S., & Mohammed, A. (2024). Disruptive dynamics and transformational opportunities: An in-depth exploration of e-commerce and online marketplaces. *ISAR Journal of Economics and Business Management*, 2(1), 1–4.

34. Sundararajan, S., Mohammed, A., & Lawal, T. (2023). Role of human resource management in the post COVID-19 era: Experiential study. *Bio Gecko: A Journal for New Zealand Herpetology*, 12(2), 3121–3127.

35. Sundararajan, S., Muhammed, A., & Senthil Kumar, S. (2024). A study on HR strategies for managing talents in a global perspective. *ISRG Journal of Economics, Business & Management*, 2(1), 15–21. <https://zenodo.org/records/10547775>

36. Teece, D. J. (2018). Business models and dynamic capabilities. *Long Range Planning*, 51(1), 40–49. <https://doi.org/10.1016/j.lrp.2017.06.007>

37. Wang, X., Xu, Y., et al. (2025). Large-scale evaluation of LLM-based AI agent frameworks in software engineering. *arXiv preprint arXiv:2512.01939*.